会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method for homogenizing resolution in magnet resonance tomography measurements using non-linear encoding fields
    • 使用非线性编码区域在磁共振断层摄影测量中使分辨率均匀化的方法
    • US08823372B2
    • 2014-09-02
    • US13064277
    • 2011-03-16
    • Hans WeberMaxim ZaitsevDaniel GallichanGerrit Schultz
    • Hans WeberMaxim ZaitsevDaniel GallichanGerrit Schultz
    • G01R33/48G01R33/483
    • G01R33/4833
    • A method for magnetic resonance (=MR) imaging, wherein non-linear gradient fields are applied for the purpose of spatial encoding to acquire images of an object to be imaged and wherein the magnet resonance signal radiated from the object to be imaged is sampled on grids in time, to thereby obtain sampling points, is characterized in that the object to be imaged is mapped completely in regions of stronger gradient fields by increasing the density of the sampling points in the center of k-space, and additional sampling points are specifically acquired in the outer regions of k-space according to a k-space sampling pattern depending on the desired distribution of the resolution in the measurement, wherein the MR measurement is calculated with the additional sampling points. An MR imaging method is thereby provided by means of which homogenized resolution is achieved in the MR measurements using non-linear gradient fields for spatial encoding.
    • 一种用于磁共振(= MR)成像的方法,其中应用非线性梯度场用于空间编码以获取待成像对象的图像,并且其中从待成像对象辐射的磁共振信号被采样在 时间上的网格,从而获得采样点,其特征在于通过增加k空间中心的采样点的密度,将要成像的对象完全映射在更强的梯度场的区域中,并且附加的采样点是具体的 根据k-空间采样模式在k空间的外部区域中取决于测量中的分辨率的期望分布,其中用附加采样点计算MR测量值。 由此提供MR成像方法,通过这种方法,使用非线性梯度场用于空间编码的MR测量中实现了均匀分辨率。
    • 2. 发明申请
    • Method for homogenizing resolution in magnet resonance tomography measurements using non-linear encoding fields
    • 使用非线性编码区域在磁共振断层摄影测量中使分辨率均匀化的方法
    • US20110241678A1
    • 2011-10-06
    • US13064277
    • 2011-03-16
    • Hans WeberMaxim ZaitsevDaniel GallichanGerrit Schultz
    • Hans WeberMaxim ZaitsevDaniel GallichanGerrit Schultz
    • G01R33/48
    • G01R33/4833
    • A method for magnetic resonance (=MR) imaging, wherein non-linear gradient fields are applied for the purpose of spatial encoding to acquire images of an object to be imaged and wherein the magnet resonance signal radiated from the object to be imaged is sampled on grids in time, to thereby obtain sampling points, is characterized in that the object to be imaged is mapped completely in regions of stronger gradient fields by increasing the density of the sampling points in the center of k-space, and additional sampling points are specifically acquired in the outer regions of k-space according to a k-space sampling pattern depending on the desired distribution of the resolution in the measurement, wherein the MR measurement is calculated with the additional sampling points. An MR imaging method is thereby provided by means of which homogenized resolution is achieved in the MR measurements using non-linear gradient fields for spatial encoding.
    • 一种用于磁共振(= MR)成像的方法,其中应用非线性梯度场用于空间编码以获取待成像对象的图像,并且其中从待成像对象辐射的磁共振信号被采样在 时间上的网格,从而获得采样点,其特征在于通过增加k空间中心的采样点的密度,将要成像的对象完全映射在更强的梯度场的区域中,并且附加的采样点是具体的 根据k-空间采样模式在k空间的外部区域中取决于测量中的分辨率的期望分布,其中用附加采样点计算MR测量值。 由此提供MR成像方法,通过这种方法,使用非线性梯度场用于空间编码的MR测量中实现了均匀分辨率。
    • 5. 发明授权
    • Charge compensation semiconductor device
    • 充电补偿半导体器件
    • US08901642B2
    • 2014-12-02
    • US13414037
    • 2012-03-07
    • Hans WeberFranz Hirler
    • Hans WeberFranz Hirler
    • H01L29/78
    • H01L29/7802H01L29/0634H01L29/1095H01L29/167H01L29/32H01L29/407H01L29/408H01L29/41766H01L29/66727
    • A semiconductor device includes a semiconductor body having a first surface defining a vertical direction and a source metallization arranged on the first surface. In a vertical cross-section the semiconductor body further includes: a drift region of a first conductivity type; at least two compensation regions of a second conductivity type each of which forms a pn-junction with the drift region and is in low resistive electric connection with the source metallization; a drain region of the first conductivity type having a maximum doping concentration higher than a maximum doping concentration of the drift region, and a third semiconductor layer of the first conductivity type arranged between the drift region and the drain region and includes at least one of a floating field plate and a floating semiconductor region of the second conductivity type forming a pn-junction with the third semiconductor layer.
    • 半导体器件包括具有限定垂直方向的第一表面和布置在第一表面上的源极金属化的半导体本体。 在垂直横截面中,半导体主体还包括:第一导电类型的漂移区; 至少两个第二导电类型的补偿区域,每个补偿区域与漂移区域形成pn结并与源极金属化处于低电阻电连接; 具有高于漂移区的最大掺杂浓度的最大掺杂浓度的第一导电类型的漏极区和布置在漂移区和漏极区之间的第一导电类型的第三半导体层,并且包括以下中的至少一个: 浮置场板和第二导电类型的浮置半导体区域形成与第三半导体层的pn结。