会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Polynucleotides encoding interferon gamma peptide variants
    • 编码干扰素γ肽变体的多核苷酸
    • US20050201982A1
    • 2005-09-15
    • US11115906
    • 2005-04-27
    • Bart HazelAnne JensenFrank NygaardKim Anderson
    • Bart HazelAnne JensenFrank NygaardKim Anderson
    • A61K38/00C07K14/57A61K38/21C12P21/04
    • C07K14/57A61K38/00
    • When interferon gamma (IFNG) is produced in mammalian cell lines a heterogenous population of IFNG polypeptides is obtained due to C-terminal processing of the IFNG polypeptide. Clearly, this constitutes a severe problem in that valuable polypeptide material is lost and, further, it is necessary to carry out time-consuming and cumbersome purification in order to obtain a homogenous population of active IFNG polypeptides having the desired length. It has now been found that an IFNG fragment containing 132 amino acid residues (truncated at the nucleotide level by introducing a stop-codon after the codon encoding amino acid residue no. 132) does not undergo C-terminal truncation or, at least, is not significantly C-terminally truncated. Furthermore, as the IFNG fragment containing 132 amino acid residues is active, this opens up the possibility of producing a homogenous active IFNG polypeptide in eukaryotic host cells, such as CHO cells. More particularly, the present invention relates to an IFNG polypeptide variant exhibiting IFNG activity and having the amino acid sequence shown in SEQ ID NO:12. In a highly preferred embodiment of the invention, the variant comprises at least one further modification, such as 1-10 further modifications, relative to the amino acid sequence shown in SEQ ID NO:12. A particular preferred further modification is E38N+S40T.
    • 当在哺乳动物细胞系中产生干扰素γ(IFNG)时,由于IFNG多肽的C末端加工,获得IFNG多肽的异源群体。 显然,这构成了一个严重的问题,即有价值的多肽材料丢失,而且还需要进行耗时且繁琐的纯化,以获得具有所需长度的活性IFNG多肽的均质群体。 现在已经发现,含有132个氨基酸残基的IFNG片段(在编码氨基酸残基132号的密码子后通过引入终止密码子在核苷酸水平被截短)不经历C-末端截短,或至少是 不显着C末端截断。 此外,由于含有132个氨基酸残基的IFNG片段是有活性的,因此可以在真核宿主细胞如CHO细胞中产生均一的活性IFNG多肽。 更具体地,本发明涉及表现出IFNG活性且具有SEQ ID NO:12所示氨基酸序列的IFNG多肽变体。 在本发明的一个非常优选的实施方案中,相对于SEQ ID NO:12所示的氨基酸序列,变体包含至少一个其它修饰,例如1-10个其它修饰。 特别优选的进一步修改是E38N + S40T。
    • 9. 发明授权
    • Raw gas burner and process for burning oxygenic constituents in process
gas
    • 原燃气燃烧器和燃烧过程气体中含氧成分的方法
    • US5601789A
    • 1997-02-11
    • US356601
    • 1994-12-15
    • Andreas RuhlPatrick McGeheeKim AndersonSerguei Charamko
    • Andreas RuhlPatrick McGeheeKim AndersonSerguei Charamko
    • F23D14/00F23D14/62F23G7/06B01D50/00B01D53/34
    • F23G7/065F23D14/62F23G2207/102F23G2207/20
    • Raw gas burner that maximizes fuel efficiency of the burner, minimizes residence time, and reduces or eliminates flame contact with the process air or gas in order to minimize NOx formation. Process air flow such as from the cold side of a heat exchanger associated with thermal oxidizer apparatus is directed into and around the burner. The amount of process air flowing into the burner is regulated based upon the pressure drop created by the burner assembly. The pressure drop is, in turn, regulated by one or more of an external damper assembly, an internal damper assembly, and movement of the burner relative to the apparatus in which it is mounted. To ensure thorough mixing of the fuel and process air, process air entering the burner is caused to spin by the use of a swirl generator. The fuel/process air mixture proceeds into the combustion section of the burner, where the swirling flow is caused to recirculate to ensure complete combustion of the fuel in the combustion chamber. The mixture of burned fuel and process gas transfers its energy flamelessly to the process gas circulating outside the burner combustion chamber, and is hot enough to ignite the process gas there, which then burns separately from the burner combustion chamber, such as in the main combustion enclosure of the thermal post-combustion device.
    • 原燃气燃烧器使燃烧器的燃油效率最大化,最小化停留时间,并减少或消除与过程空气或气体的火焰接触,以最小化NOx的形成。 来自与热氧化装置相关联的热交换器的冷侧的处理空气流被引导到燃烧器中和周围。 基于由燃烧器组件产生的压降来调节流入燃烧器的过程空气量。 压降又由一个或多个外部阻尼器组件,内部阻尼器组件和燃烧器相对于其安装的装置的运动来调节。 为了确保燃料和处理空气的充分混合,通过使用涡流发生器使进入燃烧器的进程空气旋转。 燃料/过程空气混合物进入燃烧器的燃烧部分,在该燃烧器的燃烧部分中,使涡旋流再循环以确保燃料在燃烧室中完全燃烧。 燃烧燃料和处理气体的混合物将其能量无火焰地转移到在燃烧器燃烧室外循环的过程气体,并且足够高以点燃那里的工艺气体,然后该燃烧器与燃烧器燃烧室分开燃烧,例如主燃烧 热后燃烧装置的外壳。