会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 71. 发明授权
    • Energy saving support device
    • 节能支持装置
    • US08694174B2
    • 2014-04-08
    • US13122528
    • 2009-10-06
    • Atsushi NishinoSatoshi Hashimoto
    • Atsushi NishinoSatoshi Hashimoto
    • G05B1/01
    • F24F11/70F24F11/46F24F11/47F24F2140/60
    • An energy saving support device supports energy saving of an air conditioner and includes an acquiring unit, a first energy calculating unit, a second energy calculating unit, an information generating unit and a reporting unit. The acquiring unit acquires operating data regarding the air conditioner. The first energy calculating unit determines a total consumed energy or a standard consumed energy of the air conditioner as a comparison target energy based on the operating data acquired by the acquiring unit. The second energy calculating unit determines a low-COP consumed energy based on the operating data acquired by the acquiring unit. The information generating unit generates room-for-energy-saving information in order to determine a potential for energy saving based on the comparison target energy and the low-COP consumed energy. The reporting unit reports the room-for-energy-saving information.
    • 节能支持装置支持空调的节能,包括获取单元,第一能量计算单元,第二能量计算单元,信息生成单元和报告单元。 获取单元获取关于空调的操作数据。 第一能量计算单元基于由获取单元获取的操作数据,确定空调的总消耗能量或标准消耗能量作为比较目标能量。 第二能量计算单元基于由获取单元获取的操作数据来确定低COP消耗能量。 信息生成单元基于比较对象能量和低COP消耗能量,生成节能信息,以确定节能的可能性。 报告单位报告节能信息。
    • 72. 发明授权
    • Load processing balance setting apparatus
    • 负载处理平衡设定装置
    • US08670871B2
    • 2014-03-11
    • US13139752
    • 2009-12-21
    • Atsushi NishinoSatoshi Hashimoto
    • Atsushi NishinoSatoshi Hashimoto
    • G01M1/38G05B13/00G05B15/00G05D23/00F28F13/00
    • F24F11/30F24F11/46F24F11/54F24F11/62
    • A load processing balance setting apparatus includes first and second air-conditioners for targeted first and second areas, a calculating unit, a determining unit and an adjusting unit. The first area is included within the second area. The calculating unit calculates a sum of an air-conditioning load for the first and second air-conditioners. Preferably, the determining unit determines a first and second processing throughputs for the first and second air-conditioners so that a COP (Coefficient of Performance) for the sum of the air-conditioning loads calculated by the calculating unit is maximized or is equal to or greater than a predetermined level, or so that a power consumption level for the sum of the air-conditioning loads calculated by the calculating unit is minimized or is equal to or less than a predetermined level. The adjusting unit controls the first and second air-conditioners based on the first and second processing throughputs.
    • 负载处理平衡设定装置包括用于目标的第一和第二区域的第一和第二空调器,计算单元,确定单元和调整单元。 第一个区域包括在第二个区域内。 计算单元计算第一和第二空调的空调负荷的总和。 优选地,确定单元确定第一和第二空调的第一和第二处理吞吐量,使得由计算单元计算的空调负载之和的COP(性能的系数)最大化或等于或等于 大于预定水平,或者使得由计算单元计算的空调负载之和的功率消耗水平被最小化或者等于或小于预定水平。 调整单元基于第一和第二处理吞吐量来控制第一和第二空调。
    • 74. 发明申请
    • ENERGY SAVING SUPPORT DEVICE
    • 节能支持设备
    • US20110190954A1
    • 2011-08-04
    • US13122528
    • 2009-10-06
    • Atsushi NishinoSatoshi Hashimoto
    • Atsushi NishinoSatoshi Hashimoto
    • G05B1/01
    • F24F11/70F24F11/46F24F11/47F24F2140/60
    • An energy saving support device supports energy saving of an air conditioner and includes an acquiring unit, a first energy calculating unit, a second energy calculating unit, an information generating unit and a reporting unit. The acquiring unit acquires operating data regarding the air conditioner. The first energy calculating unit determines a total consumed energy or a standard consumed energy of the air conditioner as a comparison target energy based on the operating data acquired by the acquiring unit. The second energy calculating unit determines a low-COP consumed energy based on the operating data acquired by the acquiring unit. The information generating unit generates room-for-energy-saving information in order to determine a potential for energy saving based on the comparison target energy and the low-COP consumed energy. The reporting unit reports the room-for-energy-saving information.
    • 节能支持装置支持空调的节能,包括获取单元,第一能量计算单元,第二能量计算单元,信息生成单元和报告单元。 获取单元获取关于空调的操作数据。 第一能量计算单元基于由获取单元获取的操作数据,确定空调的总消耗能量或标准消耗能量作为比较目标能量。 第二能量计算单元基于由获取单元获取的操作数据来确定低COP消耗能量。 信息生成单元基于比较对象能量和低COP消耗能量,生成节能信息,以确定节能的可能性。 报告单位报告节能信息。
    • 75. 发明授权
    • Spherical ultrafine particles and process for producing the same
    • 球形超细颗粒及其制造方法
    • US07771788B2
    • 2010-08-10
    • US11662385
    • 2005-09-07
    • Seichin KinutaAtsushi Nishino
    • Seichin KinutaAtsushi Nishino
    • B32B5/66
    • H01G11/24B01J4/002B01J19/26B22F1/0048B22F9/08C01B32/05C01B32/382C01B33/193G03G9/0804G03G9/0815G03G9/0827G03G9/10H01G11/34H01G11/42Y02E60/13Y10T428/2982Y10T428/2991Y10T428/2993Y10T428/2995Y10T428/2996Y10T428/2998
    • The method of the present invention can 1) produce spherical and scaly ultrafine particles without pulverization, 2) obtain spherical ultrafine particles having a sharp spherical particle diameter distribution without requiring a sieving step, 3) produce spherical ultrafine particles extremely approximating a true circle and possessing a particle diameter of 100 nm˜50,000 nm allowing selection of a size suitable for the particular purpose of use and 4) produce spherical ultrafine particles on a commercial scale at low cost. There is also provided spherical ultrafine particles produced by the above production process. The spherical ultrafine particles of the present invention are characterized by a form having circularity of 0.9 to 1.0 and a particle diameter of 0.01 μm to 10 μm without pulverization. The spherical ultrafine particles can be produced by the method of the present invention using as a nozzle a base having special through holes and hole density. In this base nozzle, the through holes have a diameter of 0.05 μm˜50 μm, a through hole aspect ratio of 5 to 200 and a hole density of 100 to 7,000/cm2.
    • 本发明的方法可以1)无粉碎产生球形和鳞状超细颗粒,2)获得具有尖锐的球形粒径分布的球形超细颗粒,不需要筛分步骤,3)产生极近似真圆的球形超细颗粒, 粒径为100nm〜50,000nm,允许选择适合于特定使用目的的尺寸,以及4)以低成本商业规模生产球形超细颗粒。 还提供了通过上述生产方法生产的球形超细颗粒。 本发明的球状超微粒子的特征在于圆形度为0.9〜1.0,粒径为0.01〜10μm,不进行粉碎。 球形超细颗粒可以通过本发明的方法使用具有特殊通孔和孔密度的基底作为喷嘴来制造。 在该基座喷嘴中,通孔的直径为0.05μm〜50μm,通孔长径比为5〜200,孔密度为100〜7,000 / cm 2。
    • 76. 发明申请
    • AIR CONDITIONING CONTROL DEVICE AND AIR CONDITIONING CONTROL METHOD
    • 空调控制装置和空调控制方法
    • US20100010680A1
    • 2010-01-14
    • US12374704
    • 2007-07-24
    • Atsushi NishinoSatoshi Hashimoto
    • Atsushi NishinoSatoshi Hashimoto
    • G05D7/00F25D17/06
    • F24F9/00F24F11/30F24F2221/38
    • An air conditioning control device includes an operating-unit specifying unit, an adjacent-unit specifying unit and an adjacent-unit control unit, and collectively controls the operation of an indoor unit group. The operating-unit specifying unit specifies an operating unit to perform an air conditioning operation from the indoor units included in the indoor unit group. The adjacent-unit specifying unit specifies an adjacent unit adjacent to the operating unit from the indoor units included in the indoor unit group. The adjacent-unit control unit causes the adjacent unit to perform an air flow generating operation. This air flow inhibits air conditioned by the air conditioning operation of the operating unit from diffusing from an air conditioning target space.
    • 空调控制装置包括操作单元指定单元,相邻单元指定单元和相邻单元控制单元,并且共同地控制室内单元组的操作。 操作单元指定单元指定从室内单元组中包括的室内单元执行空调操作的操作单元。 相邻单元指定单元从包括在室内单元组中的室内单元指定与操作单元相邻的相邻单元。 相邻单元控制单元使相邻单元执行气流产生操作。 该空气流阻止由操作单元的空调操作调节的空气从空调目标空间扩散。
    • 80. 发明授权
    • Low melting, opaque enamel frit
    • 低熔点,不透明的搪瓷玻璃料
    • US4469798A
    • 1984-09-04
    • US433819
    • 1982-10-12
    • Atsushi NishinoKunio KimuraMasaki IkedaHajime Oyabu
    • Atsushi NishinoKunio KimuraMasaki IkedaHajime Oyabu
    • C03C3/064C03C8/08C03C8/14C03C8/20C03C5/02
    • C03C8/20C03C8/08
    • A low melting, opaque enamel frit is described, which comprises 30 to 36 wt. % of SiO.sub.2, 15 to 20 wt. % of B.sub.2 O.sub.3, 7 to 9 wt. % of Na.sub.2 O, 5 to 10 wt. % of ZrO.sub.2, 10 to 17 wt. % of TiO.sub.2, 7 to 15 wt. % of K.sub.2 O, 2 to 10 wt. % of F.sub.2 and 0.5 to 2.5 wt. % of P.sub.2 O.sub.5. The total of Na.sub.2 O and K.sub.2 O is in the range of 15 to 20 wt. % and the total of TiO.sub.2 and ZrO.sub.2 is in the range of 15 to 20 wt. %. The ZrO.sub.2 /(TiO.sub.2 +ZrO.sub.2) ratio is in the range of 0.25 to 0.5:1 and the SiO.sub.2 /B.sub.2 O.sub.3 ratio is in the range of 1.5 to 2.4:1. In addition, the Na.sub.2 O/K.sub.2 O ratio is in the range of 0.6 to 1.0:1 and the (Na.sub.2 O+K.sub.2 O)/(TiO.sub.2 +ZrO.sub.2) is in the range of 0.7 to 1.2:1.
    • 描述了低熔点不透明的釉质玻璃料,其包含30至36重量% 的SiO 2%,15〜20wt。 B2O3%,7〜9wt。 %的Na 2 O,5〜10wt。 %的ZrO 2,10〜17wt。 %的TiO 2,7〜15wt。 %的K2O,2〜10wt。 F2的比例为0.5〜2.5wt。 %的P2O5。 Na 2 O和K 2 O的总量在15至20重量%的范围内。 %,TiO 2和ZrO 2的总量在15〜20重量%的范围内。 %。 ZrO 2 /(TiO 2 + ZrO 2)的比例在0.25〜0.5:1的范围内,SiO 2 / B 2 O 3的比例在1.5〜2.4:1的范围内。 另外,Na 2 O / K 2 O比在0.6〜1.0:1的范围内,(Na2O + K2O)/(TiO2 + ZrO2)在0.7〜1.2:1的范围内。