会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 53. 发明申请
    • STRESSED SOI FET HAVING DOPED GLASS BOX LAYER
    • 具有DOPED GLASS BOX LAYER的应力SOI FET
    • US20080169508A1
    • 2008-07-17
    • US11622056
    • 2007-01-11
    • Dureseti ChidambarraoWilliam K. HensonYaocheng Liu
    • Dureseti ChidambarraoWilliam K. HensonYaocheng Liu
    • H01L27/12H01L21/84
    • H01L29/78696H01L21/823807H01L21/823878H01L21/84H01L27/1203H01L29/045H01L29/7849
    • A method is provided for fabricating a semiconductor-on-insulator (“SOI”) substrate including (i) an SOI layer of monocrystalline silicon separated from (ii) a bulk semiconductor layer by (ii) a buried oxide (“BOX”) layer, the BOX layer including a layer of doped silicate glass. In such method, a sacrificial stressed layer is deposited to overlie the SOI layer and trenches are etched through the sacrificial stressed layer and into the SOI layer. The SOI substrate is heated with the sacrificial stressed layer sufficiently to cause the glass layer to soften, thereby causing the sacrificial stressed layer to apply stress to the SOI layer to form a stressed SOI layer. A dielectric material can then be deposited in the trenches to form isolation regions contacting peripheral edges of the stressed SOI layer, the isolation regions extending from a major surface of the stressed SOI layer towards the BOX layer. The sacrificial stressed layer can then be removed to expose the stressed SOI layer.
    • 提供了一种用于制造绝缘体上半导体(“SOI”)衬底的方法,其包括(i)通过(ii)掩埋氧化物(“BOX”)层从(ii)体半导体层分离的单晶硅的SOI层 BOX层包括一层掺杂的硅酸盐玻璃。 在这种方法中,沉积牺牲应力层以覆盖SOI层,并且通过牺牲应力层蚀刻沟槽并进入SOI层。 用牺牲应力层对SOI衬底进行充分加热,使玻璃层软化,从而使牺牲应力层向SOI层施加应力以形成受应力的SOI层。 然后可以将电介质材料沉积在沟槽中以形成接触应力SOI层的外围边缘的隔离区域,隔离区域从受应力的SOI层的主表面延伸到BOX层。 然后可以去除牺牲应力层以暴露受应力的SOI层。
    • 57. 发明申请
    • CMOS process with Si gates for nFETs and SiGe gates for pFETs
    • 用于nFET的Si栅极的CMOS工艺和用于pFET的SiGe栅极
    • US20070235759A1
    • 2007-10-11
    • US11401672
    • 2006-04-11
    • William HensonYaocheng LiuAlexander ReznicekKern RimDevendra Sadana
    • William HensonYaocheng LiuAlexander ReznicekKern RimDevendra Sadana
    • H01L31/00
    • H01L21/2807H01L21/823842
    • An integration scheme for providing Si gates for nFET devices and SiGe gates for pFET devices on the same semiconductor substrate is provided. The integration scheme includes first providing a material stack comprising, from bottom to top, a gate dielectric, a Si film, and a hard mask on a surface of a semiconductor substrate that includes at least one nFET device region and at least one pFET device region. Next, the hard mask is selectively removed from the material stack in the at least one pFET device region thereby exposing the Si film. The exposed Si film is then converted into a SiGe film and thereafter at least one nFET device is formed in the least one nFET device region and at least one pFET device is formed in the at least one pFET device region. In accordance with the present invention, the least one nFET device includes a Si gate and the at least one pFET includes a SiGe gate.
    • 提供了用于在同一半导体衬底上为pFET器件提供nFET器件的Si栅极和SiGe栅极的集成方案。 该集成方案包括首先提供材料堆叠,其从底部到顶部包括在半导体衬底的表面上的栅极电介质,Si膜和硬掩模,其包括至少一个nFET器件区域和至少一个pFET器件区域 。 接下来,将硬掩模从至少一个pFET器件区域中的材料堆叠中选择性地去除,从而暴露Si膜。 暴露的Si膜然后被转换成SiGe膜,此后在至少一个nFET器件区域中形成至少一个nFET器件,并且在至少一个pFET器件区域中形成至少一个pFET器件。 根据本发明,至少一个nFET器件包括Si栅极,并且至少一个pFET包括SiGe栅极。
    • 58. 发明申请
    • Crystalline-type device and approach therefor
    • 结晶型装置及其方法
    • US20070087507A1
    • 2007-04-19
    • US10590223
    • 2004-03-17
    • Yaocheng LiuMichael DealJames Plummer
    • Yaocheng LiuMichael DealJames Plummer
    • H01L21/336H01L29/94H01L29/76H01L31/00
    • H01L29/78684H01L29/66742H01L29/785
    • Single-crystalline growth is realized using a liquid-phase crystallization approach involving the inhibition of defects typically associated with liquid-phase crystalline growth of lattice mismatched materials. According to one example embodiment, a semiconductor device structure includes a substantially single-crystal region. A liquid-phase material is crystallized to form the single-crystal region using an approach involving defect inhibition for the promotion of single-crystalline growth. In some instances, this defect inhibition involves the reduction and/or elimination of defects using a relatively small physical opening via which a crystalline growth front propagates. In other instances, this defect inhibition involves causing a change in crystallization front direction relative to a crystallization seed location. The relatively small physical opening and/or the change in crystalline front direction may be implemented, for example, using a material that is relatively unreactive with the liquid-phase material to contain the crystalline growth.
    • 使用液相结晶方法实现单晶生长,其涉及通常与晶格失配材料的液相晶体生长相关的缺陷的抑制。 根据一个示例性实施例,半导体器件结构包括基本单晶区域。 使用涉及促进单晶生长的缺陷抑制的方法将液相材料结晶以形成单晶区域。 在一些情况下,该缺陷抑制包括使用晶体生长前沿传播的相对小的物理开口来减少和/或消除缺陷。 在其他情况下,该缺陷抑制涉及相对于结晶种子位置导致结晶前沿方向的变化。 可以例如使用与液相材料相对不反应以含有结晶生长的材料来实现相对小的物理开口和/或晶体前沿的变化。