会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 53. 发明申请
    • Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping
    • US20060262598A1
    • 2006-11-23
    • US11497078
    • 2006-08-01
    • Boaz Eitan
    • Boaz Eitan
    • G11C16/04
    • H01L29/7887G11C11/5671G11C16/0475G11C16/10G11C16/14G11C16/26H01L21/28282H01L29/7885H01L29/7923
    • A non-volatile electrically erasable programmable read only memory (EEPROM) capable of storing two bit of information having a nonconducting charge trapping dielectric, such as silicon nitride, sandwiched between two silicon dioxide layers acting as electrical insulators is disclosed. The invention includes a method of programming, reading and erasing the two bit EEPROM device. The nonconducting dielectric layer functions as an electrical charge trapping medium. A conducting gate layer is placed over the upper silicon dioxide layer. A left and a right bit are stored in physically different areas of the charge trapping layer, near left and right regions of the memory cell, respectively. Each bit of the memory device is programmed in the conventional manner, using hot electron programming, by applying programming voltages to the gate and to either the left or the right region while the other region is grounded. Hot electrons are accelerated sufficiently to be injected into the region of the trapping dielectric layer near where the programming voltages were applied to. The device, however, is read in the opposite direction from which it was written, meaning voltages are applied to the gate and to either the right or the left region while the other region is grounded. Two bits are able to be programmed and read due to a combination of relatively low gate voltages with reading in the reverse direction. This greatly reduces the potential across the trapped charge region. This permits much shorter programming times by amplifying the effect of the charge trapped in the localized trapping region associated with each of the bits. In addition, both bits of the memory cell can be individually erased by applying suitable erase voltages to the gate and either left or right regions so as to cause electrons to be removed from the corresponding charge trapping region of the nitride layer.