会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 13. 发明授权
    • Formation of integrated circuit electrodes
    • 集成电路电极的形成
    • US5057455A
    • 1991-10-15
    • US443766
    • 1989-11-30
    • Pang-Dow FooWilliam T. LynchChien-Shing Pai
    • Pang-Dow FooWilliam T. LynchChien-Shing Pai
    • H01L29/73H01L21/285H01L21/311H01L21/3213H01L21/331H01L21/762H01L21/768H01L21/8249H01L27/06H01L29/732
    • H01L21/76802H01L21/28525H01L21/31144H01L21/32139H01L21/762H01L21/8249Y10S438/97
    • In the fabrication of electrodes for transistors in the BiCMOS integrated circuit, vertical windows etched in a relatively thick TEOS (or other suitable dielectric) layer, located on a relatively thin polysilicon layer, in turn located on relatively tin oxide layer areas and on relatively thick oxide layer areas, are used to define areas where polysilicon electrode material is to remain. Polysilicon is deposited in the windows in the relatively thick insulating layer, to form the basis for the desired electrode in each window. The relatively thin polysilicon layer (or, alternatively an .alpha.-amorphous silicon layer) is thereafter used as an etch stop during the subsequent removal of the relatively thick dielectric layer. Thereafter both MOS and bipolar transistors can be fabricated using the windows to define the extents of the gate regions of the MOS transistors and the extents of the emitter regions of the bipolar transistors. In addition, both the source and drain electrodes of the MOS transistors and the base electrodes of the bipolar transistors can then be simultaneously formed in a self-aligned manner without the need for etching into the underlying semiconductor substrate in which the integrated circuit is being formed.
    • 在BiCMOS集成电路中用于晶体管的电极的制造中,在位于相对较薄的多晶硅层上的相对较厚的TEOS(或其它合适的电介质)层中蚀刻的垂直窗口依次位于相对锡氧化物层区域上并且相对较厚 氧化物层区域用于限定保留多晶硅电极材料的区域。 多晶硅沉积在相对厚的绝缘层中的窗口中,以形成每个窗口中所需电极的基础。 此后,在相对较厚的电介质层的去除期间,相对薄的多晶硅层(或者可选地,α-非晶硅层)被用作蚀刻停止层。 此后,可以使用窗口来制造MOS和双极晶体管,以限定MOS晶体管的栅极区域的范围和双极晶体管的发射极区域的范围。 此外,MOS晶体管的源电极和漏电极以及双极晶体管的基极可以以自对准的方式同时形成,而不需要蚀刻到其中形成集成电路的下面的半导体衬底 。
    • 17. 发明授权
    • Method for manufacturing an insulated gate field effect transistor device
    • 绝缘栅场效应晶体管器件的制造方法
    • US4471524A
    • 1984-09-18
    • US564368
    • 1983-12-23
    • Eliezer KinsbronWilliam T. Lynch
    • Eliezer KinsbronWilliam T. Lynch
    • H01L21/225H01L21/28
    • H01L21/225H01L21/28Y10S438/92
    • An overall method for manufacturing an IGFET device having extremely shallow source and drain regions and reduced gate to source and drain overlap capacitances is disclosed. For silicon MOS devices, the method also provides for the formation of metal silicide layers on polysilicon gate electrodes and interconnection paths and the source and drain regions in the same fabrication step. Source and drain regions are formed by oxidation of an arsenic doped polysilicon source layer formed to be in contact with areas in the silicon surface in which such regions are to be formed. The rate of oxidation of the source layer exceeds the rate at which arsenic diffuses in the silicon at the oxidation temperature. Owing to a high segregation coefficient of arsenic in silicon dioxide, nearly all of the arsenic in the source layer is driven into extremely shallow source and drain regions which acquire high surface concentrations.
    • 公开了一种用于制造具有极浅源极和漏极区域以及减小的栅极至源极和漏极重叠电容的IGFET器件的总体方法。 对于硅MOS器件,该方法还提供了在同一制造步骤中在多晶硅栅极电极和互连路径以及源极和漏极区域上形成金属硅化物层的方法。 源极和漏极区域通过形成为与要形成这些区域的硅表面中的区域形成的砷掺杂多晶硅源层的氧化形成。 源层的氧化速率超过在氧化温度下砷扩散的速率。 由于二氧化硅中砷的分离系数高,源层中几乎所有的砷都被驱动到获得高表面浓度的极浅的源极和漏极区域。
    • 19. 发明授权
    • Method of forming metal-disilicide layers and contacts
    • 形成金属二硅化物层和接触的方法
    • US5449642A
    • 1995-09-12
    • US227659
    • 1994-04-14
    • Teh Y. TanGary E. McGuireWilliam T. Lynch
    • Teh Y. TanGary E. McGuireWilliam T. Lynch
    • H01L21/285H01L21/336H01L23/482H01L29/45H01L21/44H01L21/48
    • H01L29/66772H01L21/28518H01L23/4825H01L29/458H01L2924/0002
    • A method of forming a metal-disilicide (MSi.sub.2) film from a silicon-on-insulator (SOI) substrate having an insulating underlayer and a silicon outerlayer includes the formation of a first capping layer on a portion of the silicon outerlayer. The first capping layer preferably includes titanium and a preselected metal (M) such as cobalt. A step is then performed to convert a first portion of the silicon outerlayer to metal-disilicide. This step is preferably accomplished by a rapid thermal annealing step. Thereafter, a second capping layer is formed on the metal-disilicide layer. The second capping layer preferably includes titanium and metal-monosilicide (MSi). Next, a step is performed to convert a second portion of the silicon outerlayer, beneath the first portion, to metal-disilicide while preventing phase-reversal of the already formed metal-disilicide layer to metal-monosilicide. This step is preferably accomplished by a rapid thermal annealing step as well. The method can preferably be used to form low resistance metal-disilicide contacts to active regions of SOI electronic devices.
    • 从具有绝缘底层和硅外层的绝缘体上硅(SOI)衬底形成金属二硅化物(MSi2)膜的方法包括在硅外层的一部分上形成第一覆盖层。 第一覆盖层优选包括钛和预选的金属(M)如钴。 然后进行步骤以将硅外层的第一部分转化为金属二硅化物。 该步骤优选通过快速热退火步骤完成。 此后,在金属二硅化物层上形成第二覆盖层。 第二盖层优选包括钛和金属一硅化物(MSi)。 接下来,执行步骤,以将第二部分之下的硅外层的第二部分在第一部分之下转化为金属二硅化物,同时防止已经形成的金属二硅化物层与金属一硅化物相反相。 该步骤也优选通过快速热退火步骤完成。 该方法可优选用于形成低电阻金属二硅化物与SOI电子器件的有源区的接触。