会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 91. 发明申请
    • Chemical agent additives in copper CMP slurry
    • 铜CMP浆料中的化学添加剂
    • US20050205522A1
    • 2005-09-22
    • US11130377
    • 2005-05-16
    • Paul HoMei ZhouChockalingam Ramasamy
    • Paul HoMei ZhouChockalingam Ramasamy
    • B44C1/22C09G1/02C23F1/00C23F3/06
    • C09G1/02C23F3/06
    • A polishing method is achieved comprising the following steps. A layer made of material containing a metal as a main component over a substrate having recessed portions on a surface thereof so as to fill the recessed portions with the metal layer is formed. The metal is Cu, a Cu alloy, Al, or an Al alloy. The metal layer is polished by a chemical mechanical polishing method using a slurry including a polishing agent. The polishing agent contains a chemical agent and an etching agent. The chemical agent includes at least a carbonyl derivative of benzotriazole and is responsible for forming a protective film on the surface of the metal layer by reacting with the material containing a metal as a main component. The etching agent is responsible for etching the material containing a metal as a main component.
    • 实现了以下步骤的抛光方法。 形成由含有金属作为主要成分的材料制成的层,该基材在其表面上具有凹陷部分的基底上,以便用金属层填充凹陷部分。 金属是Cu,Cu合金,Al或Al合金。 通过使用包括抛光剂的浆料的化学机械抛光方法对金属层进行抛光。 抛光剂含有化学试剂和蚀刻剂。 化学试剂至少包括苯并三唑的羰基衍生物,并且负责通过与含有金属作为主要成分的材料反应在金属层的表面上形成保护膜。 蚀刻剂负责蚀刻含有金属作为主要成分的材料。
    • 92. 发明申请
    • Self-aligned lateral heterojunction bipolar transistor
    • 自对准横向异质结双极晶体管
    • US20050196931A1
    • 2005-09-08
    • US11123748
    • 2005-05-04
    • Jian LiLap ChanPurakh VermaJia ZhengShao-fu Chu
    • Jian LiLap ChanPurakh VermaJia ZhengShao-fu Chu
    • H01L21/331H01L29/737
    • H01L29/66242H01L29/737
    • A lateral heterojunction bipolar transistor (HBT), comprising a semiconductor substrate having having a first insulating layer over the semiconductor substrate. A base trench is formed in a first silicon layer over the first insulating layer to form a collector layer over an exposed portion of the semiconductor substrate and an emitter layer over the first insulating layer. A semiconductive layer is formed on the sidewalls of the base trench to form a collector structure in contact with the collector layer and an emitter structure in contact with the emitter layer. A base structure is formed in the base trench. A plurality of connections is formed through an interlevel dielectric layer to the collector layer, the emitter layer, and the base structure. The base structure preferably is a compound semiconductive material of silicon and at least one of silicon-germanium, silicon-germanium-carbon, and combinations thereof.
    • 一种横向异质结双极晶体管(HBT),包括在半导体衬底上具有第一绝缘层的半导体衬底。 基底沟槽形成在第一绝缘层上的第一硅层中,以在半导体衬底的暴露部分和第一绝缘层上的发射极层之上形成集电极层。 半导体层形成在基底沟槽的侧壁上,以形成与集电极层接触的集电极结构和与发射极层接触的发射极结构。 基底结构形成在基底沟槽中。 通过层间电介质层到集电极层,发射极层和基底结构形成多个连接。 基底结构优选是硅的化合物半导体材料和硅 - 锗,硅 - 锗 - 碳及其组合中的至少一种。
    • 97. 发明授权
    • Method of forming a pocket implant region after formation of composite insulator spacers
    • 在形成复合绝缘垫片之后形成凹穴注入区域的方法
    • US06924180B2
    • 2005-08-02
    • US10361934
    • 2003-02-10
    • Elgin Quek
    • Elgin Quek
    • H01L21/336H01L29/78H01L21/84
    • H01L29/6653H01L29/6656H01L29/6659H01L29/7833
    • A process for forming a MOSFET device featuring a pocket region placed adjacent to only a top portion of the sides of a heavily doped source/drain region, has been developed. The process features forming a heavily doped source/drain region in an area of a semiconductor substrate not covered by the gate structure or by composite insulator spacers located on the sides of the gate structure. Selective removal of an overlying insulator component of the composite insulator spacer allows a subsequent pocket implant region to be formed in an area of the semiconductor substrate directly underlying a horizontal portion of a remaining L shaped insulator spacer component. The location of the pocket region, formed butting only the top portions of the sides of the heavily doped source/drain region, reduces the risk of punch through current while limiting the impact of junction capacitance.
    • 已经开发了用于形成MOSFET器件的工艺,其特征在于仅与重掺杂源极/漏极区域的侧面的顶部附近放置的口袋区域。 该工艺的特征是在未被栅极结构覆盖的半导体衬底的区域中或通过位于栅极结构的侧面上的复合绝缘体间隔物形成重掺杂的源极/漏极区域。 选择性去除复合绝缘体间隔物的上覆绝缘体部件允许随后的口袋注入区域形成在半导体衬底的直接位于剩余的L形绝缘体间隔件部件的水平部分下方的区域中。 仅在重掺杂的源极/漏极区域形成对接的顶部的袋区域的位置降低穿通电流的风险,同时限制结电容的冲击。
    • 98. 发明申请
    • Method of forming a relaxed semiconductor buffer layer on a substrate with a large lattice mismatch
    • 在具有大晶格失配的衬底上形成松散半导体缓冲层的方法
    • US20050164436A1
    • 2005-07-28
    • US10865433
    • 2004-06-10
    • Jin LiuDong SohnLiang Hsia
    • Jin LiuDong SohnLiang Hsia
    • C30B29/52H01L21/20H01L29/10H01L21/338C30B1/00H01L21/36
    • C30B29/52H01L21/02381H01L21/0245H01L21/02463H01L21/02502H01L21/0251H01L21/02532H01L21/02543H01L21/0262H01L29/1054
    • A method of forming a relaxed silicon—germanium layer for use as an underlying layer for a subsequent, overlying tensile strain silicon layer, has been developed. The method features initial growth of a underlying first silicon—germanium layer on a semiconductor substrate, compositionally graded to feature the largest germanium content at the interface of the first silicon—germanium layer and the semiconductor substrate, with the level of germanium decreasing as the growth of the graded first silicon—germanium layer progresses. This growth sequence allows the largest lattice mismatch and greatest level of threading dislocations to be present at the bottom of the graded silicon—germanium layer, with the magnitude of lattice mismatch and threading dislocations decreasing as the growth of the graded silicon—germanium layer progresses. In situ growth of an overlying silicon—germanium layer featuring uniform or non—graded germanium content, results in a relaxed silicon—germanium layer with a minimum of dislocations propagating from the underlying graded silicon—germanium layer. In situ growth of a silicon layer results in a tensile strain, low defect density layer to be used for MOSFET device applications.
    • 已经开发了形成用于随后的上覆拉伸应变硅层的下层的松弛硅锗层的方法。 该方法的特征在于半导体衬底上的底层第一硅 - 锗层的初始生长,其组成分级以在第一硅 - 锗层和半导体衬底的界面处具有最大的锗含量,锗的含量随着生长 的分级第一硅锗层进行。 该生长序列允许最大的晶格失配和最高级别的穿透位错存在于渐变硅 - 锗层的底部,随着梯度硅 - 锗层的生长进行,晶格失配和穿透位错的大小减小。 具有均匀或非分级锗含量的上覆硅锗层的原位生长导致松弛的硅 - 锗层,其中最小的位错从下面的梯度硅 - 锗层传播。 硅层的原位生长导致用于MOSFET器件应用的拉伸应变,低缺陷密度层。
    • 100. 发明申请
    • Silicon - germanium virtual substrate and method of fabricating the same
    • 硅 - 锗虚拟衬底及其制造方法
    • US20050153495A1
    • 2005-07-14
    • US10755501
    • 2004-01-12
    • Jin Liu
    • Jin Liu
    • H01L21/336H01L29/10H01L29/78
    • H01L29/78H01L29/1054
    • A method of forming a relaxed silicon-germanium layer for accommodation of an overlying silicon layer formed with tensile strain, has been developed. The method features growth of multiple composite layers on a semiconductor substrate, with each composite layer comprised of an underlying silicon-germanium-carbon layer and of an overlying silicon-germanium layer, followed by the growth of an overlying thicker silicon-germanium layer. A hydrogen anneal procedure performed after growth of the multiple composite layers and of the thicker silicon-germanium layer, results in a top composite layer now comprised with an overlying relaxed silicon-germanium layer, exhibiting a low dislocation density. The presence of silicon-carbon micro crystals in each silicon-germanium-carbon layer reduces the formation of, and the propagation of threading dislocations in overlying silicon-germanium layers, therefore also reducing extension of these defects into an overlying silicon layer, wherein the tensile strained silicon layer will be used to accommodate a subsequent device structure.
    • 已经开发了形成用于容纳形成有拉伸应变的上覆硅层的松弛硅 - 锗层的方法。 该方法的特征是在半导体衬底上生长多个复合层,其中每个复合层由下面的硅 - 锗 - 碳层和上覆的硅 - 锗层组成,随后生长上覆的较厚的硅 - 锗层。 在多个复合层和更厚的硅 - 锗层的生长之后执行的氢退火程序导致顶层复合层现在包含具有低位错密度的上覆松弛硅 - 锗层。 在每个硅 - 锗 - 碳层中硅 - 碳微晶的存在减少了覆盖硅 - 锗层中穿透位错的形成和扩散,因此也减少了这些缺陷扩展到上覆硅层,其中拉伸 应变硅层将用于适应随后的器件结构。