会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明公开
    • Magnetic resonance force microscope
    • Magnetresonanzmikroskop
    • EP1830172A2
    • 2007-09-05
    • EP07250815.3
    • 2007-02-27
    • JEOL Ltd.Kyoto UniversityYokohama City University
    • Tsuji, ShigenoriYoshinari, YohsukeShirakawa, Masahiro c/o Kyoto UniversityKokubo, Tetsuro c/o Yokohama City University
    • G01N13/22G12B21/10
    • G01Q60/08G01Q60/52
    • A magnetic resonance force microscope (MRFM) permitting deeper understanding of an MRI image. The microscope has an RF magnetic field generator (31) for producing an RF magnetic field uniformly over the whole of a sample (21). A cantilever self-excitation loop portion self-excites the cantilever (23). Spins in the sample are thus controlled to produce a magnetic resonance force. A frequency demodulator (26) measures the resonant frequency of the cantilever from the output detection signal from a cantilever displacement-measuring instrument (29) based on the magnetic resonance force. The shift of the resonant frequencyof the cantilever is measured. A scanner (22) is controlled to keep constant the DC component of the amount of shift in the cantilever resonant frequency. The distance from the sample surface to the probe tip (24a) is adjusted. A controlled signal of a scanner driver power supply (25) creates an AFM image of the sample. A phase detector (34) creates an MRFM image according to the AC component of the amount of shift in the cantilever resonant frequency in the frequency demodulator.
    • 磁共振力显微镜(MRFM)允许更深入地了解MRI图像。 显微镜具有用于在整个样品(21)上均匀地产生RF磁场的RF磁场发生器(31)。 悬臂自激环部分自激励悬臂(23)。 因此控制样品中的自旋以产生磁共振力。 频率解调器(26)基于磁共振力从悬臂位移测量仪(29)的输出检测信号测量悬臂的谐振频率。 测量悬臂共振频率的偏移。 控制扫描器(22)以使悬臂共振频率中的偏移量的直流分量保持恒定。 从样品表面到探针尖端(24a)的距离被调节。 扫描仪驱动器电源(25)的受控信号产生样品的AFM图像。 相位检测器(34)根据频率解调器中的悬臂谐振频率的偏移量的交流分量来产生MRFM图像。
    • 7. 发明公开
    • Magnetic resonance method and apparatus for detecting an atomic structure of a sample along a surface thereof
    • 用于感测所述Atomarstruktur沿着表面的样品磁共振的方法和装置
    • EP0726444A1
    • 1996-08-14
    • EP95101802.7
    • 1995-02-10
    • Bruker Analytische Messtechnik GmbH
    • Holczer, KarolySchmalbein, DieterHoefer, Peter
    • G01B7/00G01B7/34G01N24/08G01N24/10G01R33/60
    • G01Q60/08G01Q60/52G01R33/5604G01R33/60Y10S977/838Y10S977/84Y10S977/863Y10S977/865Y10S977/88Y10S977/96
    • A method and an apparatus are disclosed for detecting an atomic structure of a sample (16) along a surface thereof. The method comprises arranging the sample (16) in a constant magnetic field (B 0 ) of predetermined field strength and high homogeneity and irradiating a high-frequency magnetic field (B 1 ) of a predetermined frequency on the sample (16), wherein the fields (B 0 ) and (B 1 ) are oriented perpendicularly to each other. The method further comprises providing a force-sensitive sensor (24) having a paramagnetic tip (26) comprising a paramagnetic material. The sensor (24) is placed in close vicinity to the sample (16) such that the paramagnetic tip (26) is in atomic interaction with the sample surface which means that the distance between the tip (26) and the surface is in the order of between 1 and 10 Å. The predetermined field strength and the predetermined frequency are set such that electron paramagnetic resonance (EPR) is excited within the tip paramagnetic material. The paramagnetic tip (26) is then displaced parallel to the sample surface for mapping predetermined points (x, y) on the sample surface. During displacing the tip (26) the force exerted on the tip (26) by a local inhomogeneous magnetic field (B loc ) caused by atomic magnetic moments (m e,k ) of the sample (16) is measured.
    • 的方法和装置是在为游离缺失沿其表面的样品(16)的原子结构的检测盘。 该方法包括布置在预定的场强度和高均匀性的恒定磁场(B 0)的样品(16)和在样品(16)照射的预定频率的高频磁场(B1),worin字段( B0)和(B1)被定向垂直于海誓山盟。 该方法还包括提供力敏感的传感器(24),其具有顺磁性尖端(26),包括顺磁材料。 所述传感器(24)在靠近附近被放置到(16)检测并顺磁性尖端(26)与所述样品表面bedeutet原子的相互作用,DASS尖端(26)和所述表面之间的距离中,样品是在顺序 在1和10之间的。 预定场强度和频率被设定预定搜索做电子顺磁共振(EPR)是尖端顺磁材料内激发。 顺磁性尖端(26)随后被用于平行样品表面上的映射的预定点(X,Y)移位到样品表面。 期间移动所述尖端(26)的力施加在所述尖端(26)通过由样品的原子磁矩(我,K)引起的局部非均匀磁场(阵营)(16)被测量。