会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Method of fabricating non-volatile memory device having charge trapping layer
    • 制造具有电荷捕获层的非易失性存储器件的方法
    • US07981786B2
    • 2011-07-19
    • US11966231
    • 2007-12-28
    • Moon Sig JooSeung Ho PyiKi Seon ParkHeung Jae ChoYong Top Kim
    • Moon Sig JooSeung Ho PyiKi Seon ParkHeung Jae ChoYong Top Kim
    • H01L21/3205H01L21/4763H01L21/302H01L21/461
    • H01L27/11568H01L21/28282H01L27/115Y10S438/942
    • A method of fabricating a non-volatile memory device having a charge trapping layer includes forming a tunneling layer, a charge trapping layer, a blocking layer and a control gate electrode layer over a substrate, forming a mask layer pattern on the control gate electrode layer, performing an etching process using the mask layer pattern as an etching mask to remove an exposed portion of the control gate electrode layer, wherein the etching process is performed as excessive etching to remove the charge trapping layer by a specified thickness, forming an insulating layer for blocking charges from moving on the control gate electrode layer and the mask layer pattern, performing anisotropic etching on the insulating layer to form an insulating layer pattern on a sidewall of the control gate electrode layer and a partial upper sidewall of the blocking layer, and performing an etching process on the blocking layer exposed by the anisotropic etching, wherein the etching process is performed as excessive etching to remove the charge trapping layer by a specified thickness.
    • 一种制造具有电荷捕获层的非易失性存储器件的方法包括在衬底上形成隧道层,电荷俘获层,阻挡层和控制栅电极层,在控制栅电极层上形成掩模层图案 使用掩模层图案作为蚀刻掩模进行蚀刻处理以去除控制栅电极层的暴露部分,其中蚀刻工艺作为过度蚀刻进行,以将电荷捕获层除去指定厚度,形成绝缘层 用于阻止电荷在控制栅电极层和掩模层图案上移动,对绝缘层进行各向异性蚀刻,以在控制栅电极层的侧壁和阻挡层的一部分上侧壁上形成绝缘层图案,以及 对通过各向异性蚀刻暴露的阻挡层进行蚀刻处理,其中执行蚀刻处理 作为过量蚀刻以将电荷捕获层除去指定的厚度。
    • 4. 发明授权
    • Method of forming gate electrode with polycide structure in semiconductor device
    • 在半导体器件中形成具有聚硅氧烷结构的栅电极的方法
    • US06248632B1
    • 2001-06-19
    • US09459510
    • 1999-12-13
    • Se Aug JangHeung Jae Cho
    • Se Aug JangHeung Jae Cho
    • H01L21336
    • H01L29/4941H01L21/28052
    • A method of forming a gate electrode with a polycide structure in a semiconductor device which can improve the interface roughness between a polysilicon layer and a silicon layer, is disclosed. According to the present invention, a gate insulating layer and a doped polysilicon layer on the gate insulating layer are formed on a semiconductor substrate. A nitrogenous polysilicon layer is then formed on the surface of the polysilicon layer by ion-implanting nitrogen ions (N2+) into the surface of the polysilicon layer or by thermal-treating the surface of the polysilicon under the atmosphere of gas containing nitrogen. Next, a metal silicide layer is formed on the nitrogenous polysilicon layer. Thereafter, the metal silicide layer, the nitrogenous polysilicon layer and the polysilicon layer are etched sequentially to form a gate electrode.
    • 公开了一种在可以改善多晶硅层和硅层之间的界面粗糙度的半导体器件中形成具有聚硅氧烷结构的栅电极的方法。 根据本发明,在半导体衬底上形成栅绝缘层上的栅绝缘层和掺杂多晶硅层。 然后通过将氮离子(N 2 +)离子注入到多晶硅层的表面中或通过在含氮气体的气氛下热处理多晶硅的表面,在多晶硅层的表面上形成含氮多晶硅层。 接着,在氮多晶硅层上形成金属硅化物层。 此后,依次蚀刻金属硅化物层,氮多晶硅层和多晶硅层以形成栅电极。
    • 5. 发明申请
    • METHOD OF FABRICATING NON-VOLATILE MEMORY DEVICE HAVING CHARGE TRAPPING LAYER
    • 制造具有电荷捕获层的非易失性存储器件的方法
    • US20090004802A1
    • 2009-01-01
    • US11966231
    • 2007-12-28
    • Moon Sig JooSeung Ho PyiKi Seon ParkHeung Jae ChoYong Top Kim
    • Moon Sig JooSeung Ho PyiKi Seon ParkHeung Jae ChoYong Top Kim
    • H01L21/336
    • H01L27/11568H01L21/28282H01L27/115Y10S438/942
    • A method of fabricating a non-volatile memory device having a charge trapping layer includes forming a tunneling layer, a charge trapping layer, a blocking layer and a control gate electrode layer over a substrate, forming a mask layer pattern on the control gate electrode layer, performing an etching process using the mask layer pattern as an etching mask to remove an exposed portion of the control gate electrode layer, wherein the etching process is performed as excessive etching to remove the charge trapping layer by a specified thickness, forming an insulating layer for blocking charges from moving on the control gate electrode layer and the mask layer pattern, performing anisotropic etching on the insulating layer to form an insulating layer pattern on a sidewall of the control gate electrode layer and a partial upper sidewall of the blocking layer, and performing an etching process on the blocking layer exposed by the anisotropic etching, wherein the etching process is performed as excessive etching to remove the charge trapping layer by a specified thickness.
    • 一种制造具有电荷捕获层的非易失性存储器件的方法包括在衬底上形成隧道层,电荷俘获层,阻挡层和控制栅电极层,在控制栅电极层上形成掩模层图案 使用掩模层图案作为蚀刻掩模进行蚀刻处理以去除控制栅电极层的暴露部分,其中蚀刻工艺作为过度蚀刻进行,以将电荷捕获层除去指定厚度,形成绝缘层 用于阻止电荷在控制栅电极层和掩模层图案上移动,对绝缘层进行各向异性蚀刻,以在控制栅电极层的侧壁和阻挡层的一部分上侧壁上形成绝缘层图案,以及 对通过各向异性蚀刻暴露的阻挡层进行蚀刻处理,其中执行蚀刻处理 作为过量蚀刻以将电荷捕获层除去指定的厚度。
    • 7. 发明授权
    • Method of forming a metal gate in a semiconductor device using atomic layer deposition process
    • 使用原子层沉积工艺在半导体器件中形成金属栅极的方法
    • US07157359B2
    • 2007-01-02
    • US10036156
    • 2001-12-26
    • Dae Gyu ParkHeung Jae ChoKwan Yong Lim
    • Dae Gyu ParkHeung Jae ChoKwan Yong Lim
    • H01L21/3205
    • H01L29/4966H01L21/28088
    • A method for forming a metal gate capable of preventing degradation in a characteristic of a gate insulating film upon formation of the metal gate. The method of forming the metal gate comprises the steps of providing a silicon substrate having device isolation films of a trench shape for defining an active region; forming a gate insulating film on the surface of the silicon substrate by means of a thermal oxidization process; sequentially forming a barrier metal film and a metal film for the gate on the gate insulating film; and patterning the metal film for the gate, the barrier metal film and the gate insulating film, wherein deposition of the barrier metal film and the metal film for the gate is performed by means of an atomic layer deposition (ALD) process or remote plasma chemical vapor deposition (CVD) process.
    • 一种用于形成金属栅极的方法,其能够防止在形成金属栅极时栅极绝缘膜的特性劣化。 形成金属栅极的方法包括以下步骤:提供具有用于限定有源区的沟槽形状的器件隔离膜的硅衬底; 通过热氧化工艺在硅衬底的表面上形成栅极绝缘膜; 在栅极绝缘膜上依次形成阻挡金属膜和栅极用金属膜; 并且对栅极金属膜,阻挡金属膜和栅极绝缘膜进行图案化,其中通过原子层沉积(ALD)工艺或远程等离子体化学技术进行用于栅极的阻挡金属膜和金属膜的沉积 气相沉积(CVD)工艺。
    • 9. 发明授权
    • CMOS of semiconductor device and method for manufacturing the same
    • 半导体器件的CMOS及其制造方法
    • US06828185B2
    • 2004-12-07
    • US10230345
    • 2002-08-29
    • Kwan Yong LimHeung Jae ChoDae Gyu ParkIn Seok Yeo
    • Kwan Yong LimHeung Jae ChoDae Gyu ParkIn Seok Yeo
    • H01L218238
    • H01L21/823857
    • The present invention discloses the single gate CMOS with the surface channel manufactured according to the manufacturing method of the present invention is very advantageous for improving the characteristics, yield and reliability of the device, by performing decoupled plasma nitridation (DPN) process on the gate oxide film of the cell NMOS and the peripheral PMOS, respectively, thereby forming a silicon nitride on the surface of the gate oxide film. Further, the single gate CMOS with the surface channel can be formed more easily through the simplified process in overall, without requiring a separate transient ion implantation process, even when the gate electrode of the n+ polysilicon layer is used, by having the threshold voltage of the cell NMOS be approximately +0.9V, the threshold voltage of the peripheral PMOS be approximately −0.5V and above, and the threshold voltage of the peripheral NMOS be approximately +0.5V and below. In addition, since the cell NMOS already has +0.9V of threshold voltage, back bias does not have to be applied separately to achieve the +0.9V threshold voltage, and the device with low power consumption is formed successfully.
    • 本发明公开了根据本发明的制造方法制造的具有表面通道的单栅极CMOS通过在栅极氧化物上进行去耦等离子体氮化(DPN)工艺来改善器件的特性,产量和可靠性是非常有利的 电池NMOS和外围PMOS的膜,从而在栅极氧化膜的表面上形成氮化硅。 此外,即使当使用n +多晶硅层的栅电极时,也可以通过整体的简化处理更容易地形成具有表面通道的单栅极CMOS,而不需要单独的瞬态离子注入工艺, 单元NMOS的阈值电压约为+ 0.9V,外围PMOS的阈值电压约为-0.5V及以上,并且外围NMOS的阈值电压约为+ 0.5V及以下。 另外,由于单元NMOS已经具有阈值电压的+ 0.9V,所以不必单独施加反向偏置以实现+ 0.9V阈值电压,并且成功地形成具有低功耗的器件。