会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Simulation corrected sensitivity
    • 模拟校正灵敏度
    • US5787008A
    • 1998-07-28
    • US629488
    • 1996-04-10
    • Satyamurthy PullelaAbhijit DharchoudhuryDavid T. BlaauwTim J. EdwardsJoseph W. NortonPeter R. O'Brien
    • Satyamurthy PullelaAbhijit DharchoudhuryDavid T. BlaauwTim J. EdwardsJoseph W. NortonPeter R. O'Brien
    • G06F17/50
    • G06F17/5022G06F17/505
    • A process and implementing computer system (13) for optimally sizing elements of an integrated circuit includes determining actual arrival times and required arrival times (403) for processed signals at all nodes within the integrated circuit and determining the slack or difference (405) between arrival and required times for each node. If the actual arrival time for a particular node is after the time required to meet a predetermined design constraint of the node (407), a determination (411) is made regarding the effect of that element on the nodal slack for an incremental increase in the size of that element. Thereafter an element is selected (413) for sizing increase (415) in accordance with a weighting function and the process is repeated until all of the nodes in the integrated circuit have positive slack times (407, 409). One method of accomplishing a timing analysis step (303) includes an analytical circuit simulation technique (1000-1015) in which circuit "I-V" characteristics are more precisely represented with a power series (1006) including a plurality of regional segmental approximations (901-907). Another method of timing analysis includes an equivalency methodology (1501-1513) of translating passive transistors to equivalent RC networks (801). In the overall optimization process, a method is provided (1701-1715) for automatically correcting transistor predicted sensitivities based upon a correction factor (1713). A multi-model timing method (1601-1619) is also illustrated (1601-1619) for synergistically combining fast and accurate circuit timing models to optimize the speed and accuracy of the design process itself while remaining within an accuracy threshold.
    • 用于最佳地确定集成电路元件的尺寸的过程和实现计算机系统(13)包括确定集成电路内所有节点处的处理信号的实际到达时间和所需的到达时间(403),并确定到达之间的松弛或差异(405) 和每个节点所需的时间。 如果特定节点的实际到达时间在满足节点(407)的预定设计约束所需的时间之后,则确定(411)关于该元素对节点松弛的影响,以增加节点 该元素的大小。 此后,根据加权函数选择用于尺寸增加(415)的元件(413),并重复该过程,直到集成电路中的所有节点具有正的松弛时间(407,409)。 实现定时分析步骤(303)的一种方法包括一种分析电路仿真技术(1000-1015),其中电路“IV”特性被更精确地用包括多个区域分段近似(901- 907)。 定时分析的另一种方法包括将无源晶体管转换为等效RC网络的等效方法(1501-1513)(801)。 在整体优化过程中,提供了一种基于校正因子(1713)自动校正晶体管预测灵敏度的方法(1701-1715)。 还示出了多模式定时方法(1601-1619)(1601-1619),用于协同地组合快速和精确的电路定时模型,以优化设计过程本身的速度和精度,同时保持在精度阈值内。
    • 2. 发明授权
    • Complementary network reduction for load modeling
    • 用于负载建模的互补网络简化
    • US5790415A
    • 1998-08-04
    • US630189
    • 1996-04-10
    • Satyamurthy PullelaAbhijit DharchoudhuryDavid T. BlaauwTim J. EdwardsJoseph W. Norton
    • Satyamurthy PullelaAbhijit DharchoudhuryDavid T. BlaauwTim J. EdwardsJoseph W. Norton
    • G06F17/50
    • G06F17/505G06F17/5022G06F2217/78
    • A process and implementing computer system (13) for optimally sizing elements of an integrated circuit includes determining actual arrival times and required arrival times (403) for processed signals at all nodes within the integrated circuit and determining the slack or difference (405) between arrival and required times for each node. If the actual arrival time for a particular node is after the time required to meet a predetermined design constraint of the node (407), a determination (411) is made regarding the effect of that element on the nodal slack for an incremental increase in the size of that element. Thereafter an element is selected (413) for sizing increase (415) in accordance with a weighting function and the process is repeated until all of the nodes in the integrated circuit have positive slack times (407, 409). One method of accomplishing a timing analysis step (303) includes an analytical circuit simulation technique (1000-1015) in which circuit "I-V" characteristics are more precisely represented with a power series (1006) including a plurality of regional segmental approximations (901-907). Another method of timing analysis includes an equivalency methodology (1501-1513) of translating passive transistors to equivalent RC networks (801). In the overall optimization process, a method is provided (1701-1715) for automatically correcting transistor predicted sensitivities based upon a correction factor (1713). A multi-model timing method (1601-1619) is also illustrated (1601-1619) for synergistically combining fast and accurate circuit timing models to optimize the speed and accuracy of the design process itself while remaining within an accuracy threshold.
    • 用于最佳地确定集成电路元件的尺寸的过程和实现计算机系统(13)包括确定集成电路内所有节点处的处理信号的实际到达时间和所需的到达时间(403),并确定到达之间的松弛或差异(405) 和每个节点所需的时间。 如果特定节点的实际到达时间在满足节点(407)的预定设计约束所需的时间之后,则确定(411)关于该元素对节点松弛的影响,以增加节点 该元素的大小。 此后,根据加权函数选择用于尺寸增加(415)的元件(413),并重复该过程,直到集成电路中的所有节点具有正的松弛时间(407,409)。 实现定时分析步骤(303)的一种方法包括一种分析电路仿真技术(1000-1015),其中电路“IV”特性被更精确地用包括多个区域分段近似(901- 907)。 定时分析的另一种方法包括将无源晶体管转换为等效RC网络的等效方法(1501-1513)(801)。 在整体优化过程中,提供了一种基于校正因子(1713)自动校正晶体管预测灵敏度的方法(1701-1715)。 还示出了多模式定时方法(1601-1619)(1601-1619),用于协同地组合快速和精确的电路定时模型,以优化设计过程本身的速度和精度,同时保持在精度阈值内。
    • 3. 发明授权
    • Accurate delay prediction based on multi-model analysis
    • 基于多模型分析的精确延迟预测
    • US5751593A
    • 1998-05-12
    • US629487
    • 1996-04-10
    • Satyamurthy PullelaAbhijit DharchoudhuryDavid T. BlaauwTim J. EdwardsJoseph W. Norton
    • Satyamurthy PullelaAbhijit DharchoudhuryDavid T. BlaauwTim J. EdwardsJoseph W. Norton
    • G06F17/50
    • G06F17/5031G06F17/505
    • A process and implementing computer system (13) for optimally sizing elements of an integrated circuit includes determining actual arrival times and required arrival times (403) for processed signals at all nodes within the integrated circuit and determining the slack or difference (405) between arrival and required times for each node. If the actual arrival time for a particular node is after the time required to meet a predetermined design constraint of the node (407), a determination (411) is made regarding the effect of that element on the nodal slack for an incremental increase in the size of that element. Thereafter an element is selected (413) for sizing increase (415) in accordance with a weighting function and the process is repeated until all of the nodes in the integrated circuit have positive slack times (407,409). One method of accomplishing a timing analysis step (303) includes an analytical circuit simulation technique (1000-1015) in which circuit "I-V" characteristics are more precisely represented with a power series (1006) including a plurality of regional segmental approximations (901-907). Another method of timing analysis includes an equivalency methodology (1501-1513) of translating passive transistors to equivalent RC networks (801). In the overall optimization process, a method is provided (1701-1715) for automatically correcting transistor predicted sensitivities based upon a correction factor (1713). A multi-model timing method (1601-1619) is also illustrated (1601-1619) for synergistically combining fast and accurate circuit timing models to optimize the speed and accuracy of the design process itself while remaining within an accuracy threshold.
    • 用于最佳地确定集成电路元件的尺寸的过程和实现计算机系统(13)包括确定集成电路内所有节点处的处理信号的实际到达时间和所需的到达时间(403),并确定到达之间的松弛或差异(405) 和每个节点所需的时间。 如果特定节点的实际到达时间在满足节点(407)的预定设计约束所需的时间之后,则确定(411)关于该元素对节点松弛的影响,以增加节点 该元素的大小。 此后,根据加权函数选择用于调整尺寸增加的元件(413),并重复该过程,直到集成电路中的所有节点具有正的松弛时间(407,409)。 实现定时分析步骤(303)的一种方法包括一种分析电路仿真技术(1000-1015),其中电路“IV”特性被更精确地用包括多个区域分段近似(901- 907)。 定时分析的另一种方法包括将无源晶体管转换为等效RC网络的等效方法(1501-1513)(801)。 在整体优化过程中,提供了一种基于校正因子(1713)自动校正晶体管预测灵敏度的方法(1701-1715)。 还示出了多模式定时方法(1601-1619)(1601-1619),用于协同地组合快速和精确的电路定时模型,以优化设计过程本身的速度和精度,同时保持在精度阈值内。
    • 4. 发明授权
    • Methods for analyzing integrated circuits and apparatus therefor
    • 用于分析集成电路的方法及其装置
    • US07149674B1
    • 2006-12-12
    • US09580854
    • 2000-05-30
    • Supamas SirichotiyakulDavid T. BlaauwTimothy J. EdwardsChanhee OhRajendran V. PandaJudah L. AdelmanDavid MosheAbhijit Dharchoudhury
    • Supamas SirichotiyakulDavid T. BlaauwTimothy J. EdwardsChanhee OhRajendran V. PandaJudah L. AdelmanDavid MosheAbhijit Dharchoudhury
    • G06F17/50
    • G06F17/505G06F17/5022
    • A method of improving performance of a dual Vt integrated circuit is disclosed in which a first value is calculated for each transistor of the integrated circuit that has a first threshold voltage level. The first value is based at least in part on delay and leakage of the circuit calculated as if the corresponding transistor had a second threshold voltage level. One transistor is then selected based on the first values. The threshold voltage of the selected transistor is then set to the second threshold voltage level. The area of at least one transistor within the circuit is modified, and the circuit is then sized to a predetermined area. The process may then be repeated if the circuit performance fails to meet a defined constraint. In one embodiment, the performance determination includes calculating the leakage current of a set of DC-connected components into which the circuit is partitioned, determining dominant logic states for each of the components, estimating the leakage of each of these dominant logic states, and summing the weighted averages of these dominant components based on state probabilities.
    • 公开了一种提高双电位集成电路性能的方法,其中针对具有第一阈值电压电平的集成电路的每个晶体管计算第一值。 第一个值至少部分地基于如同对应的晶体管具有第二阈值电压电平那样计算的延迟和泄漏。 然后基于第一值选择一个晶体管。 然后将所选择的晶体管的阈值电压设置为第二阈值电压电平。 电路内的至少一个晶体管的面积被修改,然后将电路的尺寸设定到预定区域。 如果电路性能不能满足规定的约束,则可以重复该过程。 在一个实施例中,性能确定包括计算电路被分配到其中的一组DC连接组件的漏电流,确定每个组件的主要逻辑状态,估计这些主要逻辑状态中的每一个的泄漏,以及求和 基于状态概率的这些主成分的加权平均值。
    • 6. 发明授权
    • Logic gate size optimization process for an integrated circuit whereby
circuit speed is improved while circuit area is optimized
    • 用于集成电路的逻辑门尺寸优化处理,从而在优化电路面积的同时提高电路速度
    • US5619418A
    • 1997-04-08
    • US390210
    • 1995-02-16
    • David T. BlaauwJoseph W. NortonLarry G. JonesSusanta MisraR. Iris Bahar
    • David T. BlaauwJoseph W. NortonLarry G. JonesSusanta MisraR. Iris Bahar
    • G06F17/50
    • G06F17/505
    • An integrated circuit, when designed, must adhere to timing constraints while attempting to minimize circuit area. In order to adhere to timing specifications while arriving at a near-optimal circuit surface area, an iterative process is used which selectively increases logic gates sizes by accessing logic gates from a memory stored logic gate library. A circuit representation is read along with timing constraints for circuit paths. Each circuit path in the circuit is processed to find it's actual circuit path delay. A most out-of-specification circuit path (in terms of speed) is chosen in the circuit and a sensitivity calculation is performed for each logic gate in the most out-of-specification circuit path. The logic gate in the circuit path with the maximized sensitivity (sensitivity=.DELTA.speed/.DELTA.area) is increased in size by accessing a larger gate in the library in order to improve speed at the expense of area. The above process continues iteratively until no out-of-specification circuit paths are found.
    • 集成电路在设计时必须遵守时序约束,同时尽量减少电路面积。 为了在达到近似最佳电路表面积的同时遵循定时规范,使用迭代过程,其通过从存储器存储逻辑门库访问逻辑门来选择性地增加逻辑门大小。 电路表示与电路路径的时序约束一起读取。 处理电路中的每个电路路径以找到其实际的电路路径延迟。 在电路中选择最不符合规范的电路路径(在速度方面),并且在最规范的电路路径中对每个逻辑门执行灵敏度计算。 具有最大灵敏度(灵敏度= DELTA速度/ DELTA面积)的电路路径中的逻辑门的大小通过访问库中较大的门而增加,以便以面积为代价来提高速度。 上述过程继续进行,直到找不到超出规范的电路路径。
    • 7. 发明授权
    • Noise analysis for an integrated circuit model
    • 集成电路模型的噪声分析
    • US07093223B2
    • 2006-08-15
    • US10304423
    • 2002-11-26
    • Murat R. BecerIlan AlgorRajendran V. PandaDavid T. Blaauw
    • Murat R. BecerIlan AlgorRajendran V. PandaDavid T. Blaauw
    • G06F17/50
    • G06F17/5036
    • A method for designing and routing circuitry having reduced cross talk. Early noise analysis (22) is performed after global routing (12) but before detailed routing (28) in order to repair problems (24) before detailed routing (28) is performed. In one embodiment, the early noise analysis (22) is preceded by probabilistic extraction (16). In one embodiment, probabilistic extraction (16) includes determining a probability of occurrence for each configuration in a predetermined set of configurations (54). Probabilistic capacitance extraction is then performed (56). A probabilistic distributed coupled RC network is constructed using the extracted capacitances (60). In one embodiment, probabilistic extraction (16) includes estimating aggressor strength (20) using the probabilistic distributed coupled RC network.
    • 一种减少串扰的设计和布线电路的方法。 在全局路由(12)之后但在详细路由(28)之前执行早期噪声分析(22),以便在执行详细路由(28)之前修复问题(24)。 在一个实施例中,早期噪声分析(22)之前是概率抽取(16)。 在一个实施例中,概率提取(16)包括确定在预定的一组配置(54)中的每个配置的发生概率。 然后进行概率电容提取(56)。 使用提取的电容(60)构建概率分布耦合RC网络。 在一个实施例中,概率提取(16)包括使用概率分布耦合RC网络估计攻击者强度(20)。
    • 8. 发明授权
    • Method and apparatus for controlling current demand in an integrated circuit
    • 用于控制集成电路中的电流需求的方法和装置
    • US06819538B2
    • 2004-11-16
    • US09858126
    • 2001-05-15
    • David T. BlaauwRajendran V. PandaRajat ChaudhryVladimir P. ZolotovRavindraraj Ramaraju
    • David T. BlaauwRajendran V. PandaRajat ChaudhryVladimir P. ZolotovRavindraraj Ramaraju
    • H02H300
    • G06F1/305
    • The present invention relates generally methods and apparatus for controlling current demand in an integrated circuit. One embodiment relates to a method that includes detecting if a supply voltage overshoot or a undershoot is present or anticipated, and if detected, controlling current consumed by a power consumption circuitry to ensure that the power supply voltage remains within acceptable levels. Other embodiments relate to an integrated circuit having a capacitive decoupling structure, power consumption circuitry, and power consumption control circuitry for controlling current consumed by at least a portion of the power consumption circuitry. Therefore, embodiments of the invention relate to monitoring and controlling power consumption (i.e. current demand) of a power consumption circuit (such as an integrated circuit) in order to prevent devastating supply voltage undershoots, overshoots, and oscillations.
    • 本发明一般涉及用于控制集成电路中的电流需求的方法和装置。 一个实施例涉及一种方法,其包括检测是否存在电源电压过冲或下冲,并且如果检测到的话,控制消耗电力消耗的电流以确保电源电压保持在可接受的水平内。 其他实施例涉及具有电容去耦结构,功耗电路和功耗控制电路的集成电路,用于控制由功耗电路的至少一部分消耗的电流。 因此,本发明的实施例涉及监视和控制功耗电路(例如集成电路)的功耗(即电流需求),以便防止毁坏性的电源电压欠冲,过冲和振荡。
    • 9. 发明授权
    • Cross coupling delay characterization for integrated circuits
    • 集成电路的交叉耦合延迟特性
    • US06799153B1
    • 2004-09-28
    • US09553271
    • 2000-04-20
    • Supamas SirichotiyakulDavid T. BlaauwChanhee OhVladimir P. ZolotovRafi Levy
    • Supamas SirichotiyakulDavid T. BlaauwChanhee OhVladimir P. ZolotovRafi Levy
    • G06F1750
    • G06F17/5036G06F17/5031
    • A solution to perform cross coupling delay characterization for integrated circuits and other microprocessor applications. The invention properly models the integrated circuit in various configurations at various times to accommodate the non-linearities associated with driver circuitry and the undesirable capacitive coupling between nets within the integrated circuit, specifically those that are located within close proximity to one another and that generate deleterious effects of the transitions of the drivers from low to high, and from high to low. The invention provides for a computationally efficient solution to perform the delay characterization of the speeding up and slowing down of individual transition operations within the microprocessor. Accurate delay characterization provides for design engineers an accurate description of the worst case and best case scenarios of the integrated circuit or microprocessor that is needed for various applications such as the integration of the integrated circuit and microprocessor into a larger system.
    • 对集成电路和其他微处理器应用执行交叉耦合延迟特性的解决方案。 本发明在各种时间适当地对各种配置的集成电路建模,以适应与驱动器电路相关联的非线性以及集成电路内的网络之间的不期望的电容耦合,特别是那些位于彼此非常接近并且产生有害的 司机过渡的影响从低到高,从高到低。 本发明提供了一种计算上有效的解决方案来执行微处理器内各个转换操作的加速和减慢的延迟表征。 精确的延迟表征为设计工程师提供了对于各种应用所需的集成电路或微处理器的最坏情况和最佳情况的精确描述,例如将集成电路和微处理器集成到更大的系统中。