会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Thermo-mechanical cleavable structure
    • 热机械可切割结构
    • US08018017B2
    • 2011-09-13
    • US10905905
    • 2005-01-26
    • Fen ChenCathryn J. ChristiansenRichard S. KontraTom C. LeeAlvin W. StrongTimothy D. SullivanJoseph E. Therrien
    • Fen ChenCathryn J. ChristiansenRichard S. KontraTom C. LeeAlvin W. StrongTimothy D. SullivanJoseph E. Therrien
    • H01L31/058
    • H01L23/5256H01L2924/0002H01L2924/00
    • A thermo-mechanical cleavable structure is provided and may be used as a programmable fuse for integrated circuits. As applied to a programmable fuse, the thermo-mechanical cleavable structure includes an electrically conductive cleavable layer adjacent to a thermo-mechanical stressor. As electricity is passed through the cleavable layer, the cleavable layer and the thermo-mechanical stressor are heated and gas evolves from the thermo-mechanical stressor. The gas locally insulates the thermo-mechanical stressor, causing local melting adjacent to the bubbles in the thermo-mechanical stressor and the cleavable structure forming cleaving sites. The melting also interrupts the current flow through the cleavable structure so the cleavable structure cools and contracts. The thermo-mechanical stressor also contracts due to a phase change caused by the evolution of gas therefrom. As the thermo-mechanical cleavable structure cools, the cleaving sites expand causing gaps to be permanently formed therein.
    • 提供了一种热机械可切割结构,可用作集成电路的可编程保险丝。 如应用于可编程保险丝,热机械可切割结构包括与热机械应力源相邻的导电可切割层。 当电通过可切割层时,可切割层和热机械应力器被加热并且气体从热机械应力源逸出。 气体将热机械应力局部绝缘,导致邻近热机械应力的气泡局部熔化,形成裂开位置的可切割结构。 熔化还中断当前通过可切割结构的流动,因此可切割结构冷却和收缩。 热机械应力还由于由其产生的气体引起的相变而收缩。 当热机械可裂解结构冷却时,裂解位置膨胀,导致间隙永久形成。
    • 6. 发明申请
    • STRUCTURE FOR SEMICONDUCTOR ON-CHIP REPAIR SCHEME FOR NEGATIVE BIAS TEMPERATURE INSTABILITY
    • 半导体芯片修复方案结构的负偏差温度不稳定性
    • US20090183131A1
    • 2009-07-16
    • US12050990
    • 2008-03-19
    • Ronald J. BolamTom C. LeeTimothy D. Sullivan
    • Ronald J. BolamTom C. LeeTimothy D. Sullivan
    • G06F17/50
    • H01L23/345H01L23/5228H01L2924/0002H01L2924/00
    • Disclosed is a design structure for a semiconductor chip structure that incorporates a localized, on-chip, repair scheme for devices that exhibit performance degradation as a result of negative bias temperature instability (NBTI). The repair scheme utilizes a heating element above each device. The heating element is configured so that it can receive transmission line pulses and, thereby generate enough heat to raise the adjacent device to a temperature sufficient to allow for performance recovery. Specifically, high temperatures (e.g., between approximately 300-400° C. or greater) in the absence of bias can accelerate the recovery process to a matter of seconds as opposed to days or months. The heating element can be activated, for example, on demand, according to a pre-set service schedule, and/or in response to feedback from a device performance monitor.
    • 公开了一种用于半导体芯片结构的设计结构,其包含由于负偏压温度不稳定性(NBTI)而表现出性能劣化的器件的局部的片上修复方案。 修理方案在每个设备上使用加热元件。 加热元件被配置成使得其可以接收传输线脉冲,并且由此产生足够的热量以将相邻设备升高到足以允许性能恢复的温度。 具体而言,在不存在偏压的情况下,高温(例如,约300-400℃或更高)可以将恢复过程加速到几秒钟,而不是几天或几个月。 加热元件例如可以根据预先设定的服务时间表和/或响应于来自设备性能监视器的反馈而被激活。
    • 8. 发明授权
    • Design structure for semiconductor on-chip repair scheme for negative bias temperature instability
    • 用于负偏压温度不稳定性的半导体片上修复方案的设计结构
    • US07890893B2
    • 2011-02-15
    • US12050990
    • 2008-03-19
    • Ronald J. BolamTom C. LeeTimothy D. Sullivan
    • Ronald J. BolamTom C. LeeTimothy D. Sullivan
    • G06F17/50
    • H01L23/345H01L23/5228H01L2924/0002H01L2924/00
    • Disclosed is a design structure for a semiconductor chip structure that incorporates a localized, on-chip, repair scheme for devices that exhibit performance degradation as a result of negative bias temperature instability (NBTI). The repair scheme utilizes a heating element above each device. The heating element is configured so that it can receive transmission line pulses and, thereby generate enough heat to raise the adjacent device to a temperature sufficient to allow for performance recovery. Specifically, high temperatures (e.g., between approximately 300-400° C. or greater) in the absence of bias can accelerate the recovery process to a matter of seconds as opposed to days or months. The heating element can be activated, for example, on demand, according to a pre-set service schedule, and/or in response to feedback from a device performance monitor.
    • 公开了一种用于半导体芯片结构的设计结构,其包含由于负偏压温度不稳定性(NBTI)而表现出性能劣化的器件的局部的片上修复方案。 修理方案在每个设备上使用加热元件。 加热元件被配置成使得其可以接收传输线脉冲,并且由此产生足够的热量以将相邻设备升高到足以允许性能恢复的温度。 具体而言,在不存在偏压的情况下,高温(例如,约300-400℃或更高)可以将恢复过程加速到几秒钟,而不是几天或几个月。 加热元件例如可以根据预先设定的服务时间表和/或响应于来自设备性能监视器的反馈而被激活。
    • 9. 发明授权
    • Semiconductor on-chip repair scheme for negative bias temperature instability
    • 半导体片上修复方案负偏温度不稳定性
    • US07838958B2
    • 2010-11-23
    • US11971937
    • 2008-01-10
    • Ronald J. BolamTom C. LeeTimothy D. Sullivan
    • Ronald J. BolamTom C. LeeTimothy D. Sullivan
    • H01L31/058H01L37/00H01L21/00
    • H01L23/345H01L22/14H01L22/20H01L23/5228H01L2924/0002H01L2924/00
    • Disclosed are embodiments of a semiconductor chip structure and a method that incorporate a localized, on-chip, repair scheme for devices that exhibit performance degradation as a result of negative bias temperature instability (NBTI). The repair scheme utilizes a heating element above each device. The heating element is configured so that it can receive transmission line pulses and, thereby generate enough heat to raise the adjacent device to a temperature sufficient to allow for performance recovery. Specifically, high temperatures (e.g., between approximately 300-400° C. or greater) in the absence of bias can accelerate the recovery process to a matter of seconds as opposed to days or months. The heating element can be activated, for example, on demand, according to a pre-set service schedule, and/or in response to feedback from a device performance monitor.
    • 公开了半导体芯片结构的实施例和一种对于由于负偏压温度不稳定性(NBTI)而表现出性能劣化的器件而并入局部的片上修复方案的方法。 修理方案在每个设备上使用加热元件。 加热元件被配置成使得其可以接收传输线脉冲,并且由此产生足够的热量以将相邻设备升高到足以允许性能恢复的温度。 具体而言,在不存在偏压的情况下,高温(例如,约300-400℃或更高)可以将恢复过程加速到几秒钟,而不是几天或几个月。 加热元件例如可以根据预先设定的服务时间表和/或响应于来自设备性能监视器的反馈而被激活。