会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明授权
    • Thermo-mechanical cleavable structure
    • 热机械可切割结构
    • US08018017B2
    • 2011-09-13
    • US10905905
    • 2005-01-26
    • Fen ChenCathryn J. ChristiansenRichard S. KontraTom C. LeeAlvin W. StrongTimothy D. SullivanJoseph E. Therrien
    • Fen ChenCathryn J. ChristiansenRichard S. KontraTom C. LeeAlvin W. StrongTimothy D. SullivanJoseph E. Therrien
    • H01L31/058
    • H01L23/5256H01L2924/0002H01L2924/00
    • A thermo-mechanical cleavable structure is provided and may be used as a programmable fuse for integrated circuits. As applied to a programmable fuse, the thermo-mechanical cleavable structure includes an electrically conductive cleavable layer adjacent to a thermo-mechanical stressor. As electricity is passed through the cleavable layer, the cleavable layer and the thermo-mechanical stressor are heated and gas evolves from the thermo-mechanical stressor. The gas locally insulates the thermo-mechanical stressor, causing local melting adjacent to the bubbles in the thermo-mechanical stressor and the cleavable structure forming cleaving sites. The melting also interrupts the current flow through the cleavable structure so the cleavable structure cools and contracts. The thermo-mechanical stressor also contracts due to a phase change caused by the evolution of gas therefrom. As the thermo-mechanical cleavable structure cools, the cleaving sites expand causing gaps to be permanently formed therein.
    • 提供了一种热机械可切割结构,可用作集成电路的可编程保险丝。 如应用于可编程保险丝,热机械可切割结构包括与热机械应力源相邻的导电可切割层。 当电通过可切割层时,可切割层和热机械应力器被加热并且气体从热机械应力源逸出。 气体将热机械应力局部绝缘,导致邻近热机械应力的气泡局部熔化,形成裂开位置的可切割结构。 熔化还中断当前通过可切割结构的流动,因此可切割结构冷却和收缩。 热机械应力还由于由其产生的气体引起的相变而收缩。 当热机械可裂解结构冷却时,裂解位置膨胀,导致间隙永久形成。
    • 6. 发明授权
    • Thermally controlled refractory metal resistor
    • 耐热耐火金属电阻
    • US08592947B2
    • 2013-11-26
    • US12962722
    • 2010-12-08
    • Joseph M. LukaitisDeborah M. MasseyTimothy D. SullivanPing-Chuan WangKimball M. Watson
    • Joseph M. LukaitisDeborah M. MasseyTimothy D. SullivanPing-Chuan WangKimball M. Watson
    • H01L23/36
    • H01L28/20H01L23/3677H01L23/5228H01L27/0211H01L28/24H01L2924/0002H01L2924/00
    • A structure and method of fabricating the structure includes a semiconductor substrate having a top surface defining a horizontal direction and a plurality of interconnect levels stacked from a lowermost level proximate the top surface of the semiconductor substrate to an uppermost level furthest from the top surface. Each of the interconnect levels include vertical metal conductors physically connected to one another in a vertical direction perpendicular to the horizontal direction. The vertical conductors in the lowermost level being physically connected to the top surface of the substrate, and the vertical conductors forming a heat sink connected to the semiconductor substrate. A resistor is included in a layer immediately above the uppermost level. The vertical conductors being aligned under a downward vertical resistor footprint of the resistor, and each interconnect level further include horizontal metal conductors positioned in the horizontal direction and being connected to the vertical conductors.
    • 制造该结构的结构和方法包括:半导体衬底,其具有限定水平方向的顶表面和从最接近半导体衬底的顶表面的最底层到距离顶表面最远的最高水平层叠的多个互连层。 每个互连层包括在垂直于水平方向的垂直方向上彼此物理连接的垂直金属导体。 最底层的垂直导体物理地连接到衬底的顶表面,垂直导体形成连接到半导体衬底的散热片。 一个电阻器被包含在最上层的上方的层中。 垂直导体在电阻器的向下垂直电阻器占位面下对准,并且每个互连级别还包括位于水平方向上并且连接到垂直导体的水平金属导体。
    • 8. 发明授权
    • Method and apparatus for accelerated determination of electromigration characteristics of semiconductor wiring
    • 用于加速确定半导体布线的电迁移特性的方法和装置
    • US06603321B2
    • 2003-08-05
    • US09999719
    • 2001-10-26
    • Ronald G. Filippi, Jr.Alvin W. StrongTimothy D. SullivanDeborah TibelMichael RuprechtCarole Graas
    • Ronald G. Filippi, Jr.Alvin W. StrongTimothy D. SullivanDeborah TibelMichael RuprechtCarole Graas
    • G01R3126
    • H01L22/34G01R31/2858H01L2924/0002H01L2924/3011H01L2924/00
    • A method for determining the electromigration characteristics of a wiring structure in an integrated circuit device is disclosed. In an exemplary embodiment of the invention, the method includes configuring a defined test structure type for the integrated circuit device. The defined test structure type further includes a first line of wiring primarily disposed in a principal plane of a semiconductor substrate, and a second line of wiring connected to the first line of wiring. The second line of wiring is disposed in a secondary plane which is substantially parallel to the principal plane, with the first and second lines of wiring being connected by a via structure therebetween. A thermal coefficient of resistance for the first line of wiring and the via structure is determined, and a wafer-level stress condition is introduced in a first individual test structure of the defined test structure type. Then, at least one parameter value for is determined for the first individual test structure, which parameter value is used to predict a lifetime projection for the wiring structure in the integrated circuit device.
    • 公开了一种用于确定集成电路器件中的布线结构的电迁移特性的方法。 在本发明的示例性实施例中,该方法包括配置用于集成电路器件的定义的测试结构类型。 所确定的测试结构类型还包括主要布置在半导体衬底的主平面中的第一布线和连接到第一布线的第二布线。 布线的第二线设置在基本上平行于主平面的二次平面中,其中第一和第二布线通过它们之间的通孔结构连接。 确定第一线路和通孔结构的电阻的热系数,并且在限定的测试结构类型的第一单独测试结构中引入晶片级应力条件。 然后,对于第一单独测试结构确定至少一个参数值,哪个参数值用于预测集成电路器件中的布线结构的寿命投影。
    • 10. 发明授权
    • Design structure for semiconductor on-chip repair scheme for negative bias temperature instability
    • 用于负偏压温度不稳定性的半导体片上修复方案的设计结构
    • US07890893B2
    • 2011-02-15
    • US12050990
    • 2008-03-19
    • Ronald J. BolamTom C. LeeTimothy D. Sullivan
    • Ronald J. BolamTom C. LeeTimothy D. Sullivan
    • G06F17/50
    • H01L23/345H01L23/5228H01L2924/0002H01L2924/00
    • Disclosed is a design structure for a semiconductor chip structure that incorporates a localized, on-chip, repair scheme for devices that exhibit performance degradation as a result of negative bias temperature instability (NBTI). The repair scheme utilizes a heating element above each device. The heating element is configured so that it can receive transmission line pulses and, thereby generate enough heat to raise the adjacent device to a temperature sufficient to allow for performance recovery. Specifically, high temperatures (e.g., between approximately 300-400° C. or greater) in the absence of bias can accelerate the recovery process to a matter of seconds as opposed to days or months. The heating element can be activated, for example, on demand, according to a pre-set service schedule, and/or in response to feedback from a device performance monitor.
    • 公开了一种用于半导体芯片结构的设计结构,其包含由于负偏压温度不稳定性(NBTI)而表现出性能劣化的器件的局部的片上修复方案。 修理方案在每个设备上使用加热元件。 加热元件被配置成使得其可以接收传输线脉冲,并且由此产生足够的热量以将相邻设备升高到足以允许性能恢复的温度。 具体而言,在不存在偏压的情况下,高温(例如,约300-400℃或更高)可以将恢复过程加速到几秒钟,而不是几天或几个月。 加热元件例如可以根据预先设定的服务时间表和/或响应于来自设备性能监视器的反馈而被激活。