会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Photoelectric tube using electron beam irradiation diode as anode
    • 光电管采用电子束照射二极管作为阳极
    • US5780913A
    • 1998-07-14
    • US954616
    • 1997-10-27
    • Masaharu MuramatsuMotohiro SuyamaKoei Yamamoto
    • Masaharu MuramatsuMotohiro SuyamaKoei Yamamoto
    • H01J31/49H01L31/115
    • H01J31/49
    • When light is incident on the photoelectric surface of this electron tube, photoelectrons are emitted. These photoelectrons are accelerated and incident on an electron beam irradiation diode. A reverse voltage of about 100 V is applied to the electron beam irradiation diode to form a depletion region almost throughout an anode layer and near the p-n junction interface of a silicon substrate. The incident accelerated electrons release a kinetic energy in a heavily doped p-type layer having an electron incidence surface and the depleted anode layer to form electron-hole pairs. In this case, since the heavily doped p-type layer having the electron incidence surface is very thin, the energy is hardly released in this layer, and almost all energy is released in the depletion region. Signal charges extracted from the electron-hole pairs formed upon releasing the energy are output as a signal from two electrodes.
    • 当光入射到该电子管的光电表面上时,发射光电子。 这些光电子被加速并入射在电子束照射二极管上。 大约100V的反向电压被施加到电子束照射二极管,以在整个阳极层和硅衬底的p-n结界面附近形成耗尽区。 事件加速电子在具有电子入射表面和耗尽的阳极层的重掺杂p型层中释放动能以形成电子 - 空穴对。 在这种情况下,由于具有电子入射面的重掺杂p型层非常薄,所以在该层中几乎不释放能量,几乎所有能量在耗尽区中释放。 从释放能量时形成的电子 - 空穴对提取的信号电荷作为来自两个电极的信号被输出。
    • 2. 发明授权
    • Photomultiplier having a multilayer semiconductor device
    • 具有多层半导体器件的光电倍增管
    • US5654536A
    • 1997-08-05
    • US557541
    • 1995-11-14
    • Motohiro SuyamaMasaharu MuramatsuMakoto OishiYoshitaka IshikawaKoei Yamamoto
    • Motohiro SuyamaMasaharu MuramatsuMakoto OishiYoshitaka IshikawaKoei Yamamoto
    • H01J43/04H01J43/12H01L31/107H01J40/14
    • H01L31/1075H01J43/04H01J43/12
    • In a photomultiplier of the present invention, a semiconductor device arranged in an envelope to oppose a photocathode is constituted by a semiconductor substrate of a first conductivity type, a carrier multiplication layer of a second conductivity type different from the first conductivity type, which is formed on the semiconductor substrate by opitaxial growth, a breakdown voltage control layer of the second conductivity type, which is formed on the carrier multiplication layer and has a dopant concentration higher than that of the carrier multiplication layer, a first insulating layer formed on the breakdown voltage control layer and said carrier multiplication layer while partially exposing the surface of the breakdown voltage control layer as a receptor for photoelectrons and consisting of a nitride, and an ohmic electrode layer formed on a peripheral surface portion of the receptor of the breakdown voltage control layer. When the dopant concentration distribution in the carrier multiplication layer is uniformly controlled on the basis of epitaxial growth, the uniformity of an avalanche multiplication gain for photoelectrons incident at different positions on the receptor of the semiconductor device is improved, thereby largely increasing the energy resolving power.
    • 在本发明的光电倍增器中,布置在外壳中以与光电阴极相对的半导体器件由第一导电类型的半导体衬底,不同于第一导电类型的第二导电类型的载流子倍增层构成,形成 在所述半导体衬底上通过外延生长形成第二导电类型的击穿电压控制层,所述第二导电类型的击穿电压控制层形成在所述载体倍增层上并且具有高于载流子倍增层的掺杂剂浓度的第一绝缘层, 控制层和所述载体倍增层,同时部分地暴露作为光电子的受体的击穿电压控制层的表面,并由氮化物和形成在击穿电压控制层的受体的外围表面部分上的欧姆电极层组成。 当基于外延生长均匀地控制载体倍增层中的掺杂剂浓度分布时,提高入射在半导体器件的接收器上的不同位置处的光电子的雪崩倍增益的均匀性,从而大大提高能量分辨能力 。
    • 10. 发明申请
    • GAS CONCENTRATION CALCULATION DEVICE, GAS CONCENTRATION MEASUREMENT MODULE, AND LIGHT DETECTOR
    • 气体浓度计算装置,气体浓度测量模块和光探测器
    • US20120330568A1
    • 2012-12-27
    • US13578895
    • 2011-02-14
    • Toshiyuki IzawaKoei Yamamoto
    • Toshiyuki IzawaKoei Yamamoto
    • G06F19/00G01J1/04
    • G01N21/3504G01N21/0303G01N21/61
    • A gas concentration measuring module (2X) includes a gas cell (10X) configured to form an introduction space (11X) into which a sample gas (50X) is introduced, an infrared light source (21X) disposed at one end of the gas cell (10X), a reference light receiving element (31X) and a signal light receiving element (32X) disposed at the other end of the gas cell (10X) and configured to receive infrared light emitted from the infrared light source (21X), and an inert gas chamber (40X) disposed on an optical path between the infrared light source (21X) and the reference light receiving element (31X) in the introduction space (11X) and in which an inert gas, inert with respect to the infrared light emitted from the infrared light source (21X) is hermetically enclosed. A calculation circuit (3X) calculates a concentration of carbon dioxide in the sample gas (50X) based on a ratio between an energy value of light received by the reference light receiving element (31X) and an energy value of infrared light received by the signal light receiving element (32X) of the gas concentration measuring module (2X).
    • 气体浓度测量模块(2X)包括:气体电池(10X),被配置为形成引入空气(11X),其中引入样品气体(50X);红外光源(21X),设置在所述气室的一端 (10X),参考光接收元件(31X)和设置在气室(10X)的另一端处的信号光接收元件(32X),并且被配置为接收从红外光源(21X)发射的红外光;以及 设置在导入空间(11X)中的红外线光源(21X)和基准光接收元件(31X)之间的光路上的惰性气体室(40X),其中相对于红外线为惰性的惰性气体 从红外光源(21X)发射的气密密封。 计算电路(3X)基于由参考光接收元件(31X)接收的光的能量值与由信号接收的红外线的能量值之间的比率,计算样品气体(50X)中的二氧化碳浓度 气体浓度测量模块(2X)的光接收元件(32X)。