会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Reducing the reverse recovery charge of thyristors by nuclear irradiation
    • 通过核辐射降低晶闸管的反向恢复电荷
    • US4311534A
    • 1982-01-19
    • US163548
    • 1980-06-27
    • John BartkoKrishan S. TarnejaChang K. ChuEarl S. Schlegel
    • John BartkoKrishan S. TarnejaChang K. ChuEarl S. Schlegel
    • H01L21/322H01L21/263H01L29/167H01L29/74H01L7/54
    • H01L29/167H01L21/263Y10S148/084
    • A method of reducing the reverse recovery charge of thyristors without substantially increasing forward voltage drop by first determining the depth of the anode PN junction from a major surface adjoining a cathode emitter region. The depth of maximum defect generation in thyristor on irradiation through the major surface with a given radiation source radiating particles with molecular weight greater than one, preferably proton or alpha particles, and adjusting the energy level at the major surface of the thyristor from the radiation source to provide the depth of maximum defect generation adjacent the anode PN junction and preferably in the anode base region within 20 micrometers of the anode PN junction or in the anode emitter region within 15 micrometers of the anode PN junction. Thereafter the thyristor is irradiated through said major surface with the adjusted energy level from the radiation source to a given dosage to reduce the reverse recovery stored charge of the thyristor without substantially increasing the forward voltage drop.
    • 一种减少晶闸管的反向恢复电荷的方法,而不会通过首先确定来自邻接阴极发射极区的主表面的阳极PN结的深度而基本上增加正向压降。 通过具有给定辐射源的主表面照射的晶闸管中的最大缺陷产生的深度辐射分子量大于1的颗粒,优选质子或α粒子,并且从辐射源调节晶闸管的主表面处的能级 以提供邻近阳极PN结的最佳缺陷产生的深度,优选在阳极PN结的20微米内的阳极基极区域或阳极PN结的15微米内的阳极发射极区域中提供最大缺陷产生的深度。 此后,晶闸管通过所述主表面照射具有从辐射源到给定剂量的调节能级,以减少晶闸管的反向恢复存储电荷,而不会基本上增加正向压降。
    • 3. 发明授权
    • Tailoring of recovery charge in power diodes and thyristors by
irradiation
    • 通过照射调整功率二极管和晶闸管的恢复电荷
    • US4075037A
    • 1978-02-21
    • US687278
    • 1976-05-17
    • Krishan S. TarnejaJoseph E. JohnsonJohn Bartko
    • Krishan S. TarnejaJoseph E. JohnsonJohn Bartko
    • H01L29/74H01L21/263H01L21/322H01L29/32H01L29/861
    • H01L29/32H01L21/263H01L29/861
    • The recovery charge of power diodes and thyristors is tailored and matched by irradiation through a major surface of the semiconductor body with a given radiation source, preferably of electron radiation, to a dosage corresponding to between about 1 .times. 10.sup.12 and 8 .times. 10.sup.12 electrons per centimeter square with 2 MeV electron radiation. Preferably, the recovery charge of each device of a group of a type of diode or thyristor is first measured, and the group divided into subgroups according to the measured recovery charge of each device. The devices of at least one subgroup is then irradiated with said given radiation source to dosages corresponding to between about 1 .times. 10.sup.12 and 8 .times. 10.sup.12 electrons per centimeter square with 2 MeV electron radiation, and the recovery charge of each irradiated device is again measured to determine the incremental change of recovery charge as a function of irradiation dosage. A recovery charge of another device of said type of diode or thyristor is then measured, and the device irradiated with said radiation source to a determined dosage corresponding to a desired incremental change in recovery charge to tailor the recovery charge of said device to a desired value.
    • 功率二极管和晶闸管的恢复电荷通过辐射通过半导体本体的主表面与给定的辐射源(优选电子辐射)照射到相当于约1×10 12和8×10 12电子/厘米 2 MeV电子辐射。 优选地,首先测量一组二极管或晶闸管的每个器件的恢复电荷,并且根据每个器件的测量的恢复电荷将该组划分成子组。 然后至少一个亚组的装置用所述给定的辐射源用2MeV电子辐射照射到相当于每平方厘米约1×10 12和8×10 12个电子之间的剂量,并且再次测量每个照射装置的恢复电荷 确定作为照射剂量的函数的恢复电荷的增量变化。 然后测量所述类型的二极管或晶闸管的另一装置的恢复电荷,并且将用所述辐射源照射的装置与对应于恢复电荷的期望增量变化的确定剂量相结合,以将所述装置的恢复电荷定制到期望值 。
    • 4. 发明授权
    • Fine tuning power diodes with irradiation
    • 微调功率二极管与照射
    • US3933527A
    • 1976-01-20
    • US339699
    • 1973-03-09
    • Krishan S. TarnejaJohn BartkoJoseph E. Johnson
    • Krishan S. TarnejaJohn BartkoJoseph E. Johnson
    • H01L21/00H01L21/263
    • H01L21/263H01L21/00
    • Diodes of a particular type are fine tuned with irradiation to optimize the reverse recovery time while minimizing forward voltage drop and providing more uniform electrical characteristics. The initial and desired minority carrier lifetimes in the anode region of the type are determined as a function of forward voltage drop and reverse recovery time, and the minority carrier radiation damage factor is determined for a desired type of diode and radiation source. The radiation dosage to achieve the desired carrier lifetime with the radiation source is thereafter determined from the function 1/.tau. = 1/.tau..sub.o + K.phi., where .tau. is the desired minority carrier lifetime, .tau..sub.o is the initial minority carrier lifetime, K is the determined minority carrier radiation damage factor and .phi. is the radiation dosage. A major surface and preferably the major surface adjoining the anode region of the diodes is then irradiated with the radiation source to the determined radiation dosage. Preferably, the radiation dosage is between about 1 .times. 10.sup.12 and 5 .times. 10.sup.13 e/cm.sup.2, with electron radiation of intensity between 1 and 3 Mev.
    • 特定类型的二极管通过照射进行微调,以优化反向恢复时间,同时最小化正向压降并提供更均匀的电气特性。 确定该类型的阳极区域中的初始和期望的少数载流子寿命作为正向压降和反向恢复时间的函数,并且为所需类型的二极管和辐射源确定少数载流子辐射损伤因子。 此后,根据功能1 / tau = 1 / tau o + K phi确定达到期望的载流子寿命的辐射剂量,其中τ是期望的少数载流子寿命,τo是初始少数载流子寿命,K 是确定的少数载体辐射损伤因子,phi是辐射剂量。 然后将主表面和优选地邻接二极管的阳极区域的主表面用辐射源照射到确定的辐射剂量。 优选地,辐射剂量在约1×10 12和5×10 13 e / cm 2之间,电子辐射强度在1和3Mev之间。
    • 5. 发明授权
    • Forming of contoured irradiated regions in materials such as
semiconductor bodies by nuclear radiation
    • 通过核辐射在诸如半导体物质的材料中形成轮廓照射区域
    • US4278475A
    • 1981-07-14
    • US936
    • 1979-01-04
    • John BartkoEarl S. Schlegel
    • John BartkoEarl S. Schlegel
    • H01L21/322H01L21/263H01L29/32H01L7/54H01L21/22
    • H01L21/263H01L29/32Y10S438/961
    • Irradiated regions are formed in materials such as semiconductor bodies by nuclear radiation where the irradiated regions are of a desired thickness, dosage and dosage gradient, a desired distance from a selected surface of the material. A nuclear radiation beam from a given radiation source radiating particles with molecular weight of at least one (1) is provided that can penetrate the material through a selected surface to a depth greater than the maximum depth of the irradiated region from the selected surface. A beam modifier is formed of a given material and non-uniform shape to modify the energy of the radiation beam on transmission therethrough to form a transmitted radiation beam capable of forming an irradiated region of a desired thickness and dosage gradient in the material a given distance from the selected surface on irradiation of the material through the selected surface with the transmitted radiation beam. The material in which the desired irradiated region is to be formed is positioned with the selected surface thereof to be exposed to the radiation beam from the radiation source on transmission through the beam modifier. The material is thereafter irradiated through the beam modifier and through the selected surface with the radiation beam, preferably while the beam modifier and material are moved relative to each other through a predetermined motion, to form in the material an irradiated region of desired thickness, dosage and dosage gradient, a desired distance from the selected surface. The irradiated region thus formed in semiconductor bodies are particularly of value in changing the electrical characteristics without substantial change of other electrical characteristics.
    • 照射区域通过核辐射在诸如半导体物质的材料中形成,其中照射区域具有期望的厚度,剂量和剂量梯度,与材料的选定表面的期望距离。 提供了辐射分子量为至少一个(1)的分子量的给定辐射源的核辐射束,其能够穿过选定表面的深度大于被选择表面的照射区域的最大深度的深度。 光束修改器由给定的材料和不均匀的形状形成,以改变辐射束在其中穿过其中的能量,以形成能够在材料中形成给定距离的期望厚度和剂量梯度的辐射区域的透射辐射束 通过所述透射的辐射束通过所选择的表面照射材料从所选择的表面。 将要形成所需照射区域的材料定位成使其选择的表面暴露于通过光束改性剂透射时来自辐射源的辐射束。 然后,材料通过光束调节剂并通过所选择的表面用辐射束照射,优选地,当光束调节剂和材料通过预定的运动相对于彼此移动时,在材料中形成所需厚度的照射区域,剂量 和剂量梯度,与所选表面的期望距离。 由此形成在半导体本体中的照射区域在改变电特性而没有其他电特性的实质变化的情况下特别有价值。