会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • Stacked silicon-germanium nanowire structure and method of forming the same
    • 堆叠硅 - 锗纳米线结构及其形成方法
    • US20080135949A1
    • 2008-06-12
    • US11636381
    • 2006-12-08
    • Guo Qiang LoLakshmi Kanta BeraHoai Son NguyenNavab Singh
    • Guo Qiang LoLakshmi Kanta BeraHoai Son NguyenNavab Singh
    • H01L29/94
    • H01L29/78696B82Y10/00H01L29/0665H01L29/0673H01L29/42392
    • A method of forming a stacked silicon-germanium nanowire structure on a support substrate is disclosed. The method includes forming a stacked structure on the support substrate, the stacked structure comprising at least one channel layer and at least one interchannel layer deposited on the channel layer; forming a fin structure from the stacked structure, the fin structure comprising at least two supporting portions and a fin portion arranged there between; oxidizing the fin portion of the fin structure thereby forming the silicon-germanium nanowire being surrounded by a layer of oxide; and removing the layer of oxide to form the silicon-germanium nanowire. A method of forming a gate-all-around transistor comprising forming a stacked silicon-germanium nanowire structure that has been formed on a support substrate is also disclosed. A stacked silicon-germanium nanowire structure and a gate-all-around transistor comprising the stacked silicon-germanium nanowire structure are also disclosed.
    • 公开了一种在支撑衬底上形成堆叠的硅 - 锗纳米线结构的方法。 该方法包括在支撑基板上形成堆叠结构,该堆叠结构包括至少一个沟道层和沉积在沟道层上的至少一个沟道间层; 从所述堆叠结构形成翅片结构,所述翅片结构包括至少两个支撑部分和布置在其间的翅片部分; 氧化翅片结构的翅片部分,从而形成被一层氧化物包围的硅 - 锗纳米线; 并除去氧化物层以形成硅 - 锗纳米线。 还公开了一种形成栅极全绕晶体管的方法,包括形成已经形成在支撑衬底上的堆叠的硅 - 锗纳米线结构。 还公开了堆叠的硅 - 锗纳米线结构和包括堆叠的硅 - 锗纳米线结构的栅极全绕晶体管。
    • 5. 发明授权
    • Method of fabricating tensile strained layers and compressive strain layers for a CMOS device
    • 制造CMOS器件的拉伸应变层和压应变层的方法
    • US07439165B2
    • 2008-10-21
    • US11100206
    • 2005-04-06
    • Patrick Guo Oiang LoLakshmi Kanta BeraWei Yip LohBalakumar SubramanianNarayanan Balasubramanian
    • Patrick Guo Oiang LoLakshmi Kanta BeraWei Yip LohBalakumar SubramanianNarayanan Balasubramanian
    • H01L21/22H01L21/38
    • H01L21/823807H01L21/823878H01L29/1054H01L29/66477H01L29/66742H01L29/78H01L29/78687
    • A process for forming both tensile and compressive strained silicon layers to accommodate channel regions of MOSFET or CMOS devices has been developed. After formation of shallow trench isolation structures as well as application of high temperature oxidation and activation procedures, the fabrication sequences used to obtain the strained silicon layers is initiated. A semiconductor alloy layer is deposited followed by an oxidation procedure used to segregate a germanium component from the overlying semiconductor alloy layer into an underlying single crystalline silicon body. The level of germanium segregated into the underlying single crystalline silicon body determines the level of strain, which is in tensile state of a subsequently selectively grown silicon layer. A second embodiment of this invention features the thinning of a portion of the semiconductor alloy layer prior to the oxidation procedure allowing a lower level of germanium to be segregated into a first underlying portion of the underlying single crystalline silicon body, while during the same oxidation procedure a second portion of the underlying single crystalline silicon body receives a higher level of germanium segregation. So the subsequently deposited silicon-germanium layer, although the same process and thickness, can be strained in different states (tensile or compressive) and levels, depending different underlying portions' germanium concentration.
    • 已经开发了用于形成拉伸和压缩应变硅层以适应MOSFET或CMOS器件的沟道区的工艺。 在形成浅沟槽隔离结构以及施加高温氧化和激活程序之后,开始用于获得应变硅层的制造顺序。 沉积半导体合金层,然后沉积氧化工序,将锗组分从上覆的半导体合金层分离成下面的单晶硅体。 分离到下面的单晶硅体中的锗的水平决定了随后选择性生长的硅层的拉伸状态的应变水平。 本发明的第二个实施方案的特征在于在氧化过程之前使半导体合金层的一部分变薄,允许较低水平的锗分离成下面的单晶硅体的第一下面部分,同时在相同的氧化过程 底层单晶硅体的第二部分接受较高水平的锗分离。 因此,随后沉积的硅 - 锗层,尽管相同的工艺和厚度,可以根据不同的下层部分的锗浓度在不同的状态(拉伸或压缩)和水平应变。