会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Electrophotographic member with .alpha.-Si and H
    • 具有α-Si和H的电子照相元件
    • US4377628A
    • 1983-03-22
    • US257346
    • 1981-04-24
    • Sachio IshiokaEiichi MaruyamaYoshinori ImamuraHirokazu MatsubaraShinkichi Horigome
    • Sachio IshiokaEiichi MaruyamaYoshinori ImamuraHirokazu MatsubaraShinkichi Horigome
    • G03G5/08G03F7/20G03G5/082H01L31/08G03G5/14
    • G03F7/70216G03F7/707G03G5/08221G03G5/08235
    • Disclosed is an electrophotographic member having an amorphous-silicon photoconductive layer, wherein the distance between a portion in which light illuminating the photoconductor is absorbed therein until its intensity decreases to 1% of that at incidence and the interface of the photoconductor opposite to the light incidence side thereof is at most 5 .mu.m, whereby the residual potential of the photoconductive layer can be reduced.That part of the photoconductive layer constituting the electrophotographic member which is at least 10 nm thick inwardly of the photoconductive layer from the surface thereof to store charges is made of amorphous silicon which has an optical forbidden band gap of at least 1.6 eV and a resistivity of at least 10.sup.10 .OMEGA..multidot.cm. Further, within such photoconductive layer, a region of amorphous silicon which has an optical forbidden band gap smaller than that of the amorphous silicon forming the surface part is disposed at a thickness of at least 10 nm. By forming the region of the narrower optical forbidden band gap within the photoconductive layer in this manner, the sensitivity of the photoconductive layer to light of longer wavelengths can be enhanced.
    • 公开了具有非晶硅光电导层的电子照相构件,其中照射光电导体的光被吸收到其中的部分之间的距离,直到其强度降低到其入射时的1%,并且光电导体的与光入射相反的界面 一侧为5μm以下,能够降低光电导层的残留电位。 构成电子照相构件的光电导元件的从其表面向内存储电荷的至少10nm厚的电子照相构件的部分由非晶硅制成,其具有至少1.6eV的光学禁带宽和电阻率 至少1010 OMEGA xcm。 此外,在这种光导电层内,具有比形成表面部分的非晶硅的光学禁带宽小的非晶硅区域设置在至少10nm的厚度。 通过以这种方式在光导电层内形成较窄的光学禁带区域,可以提高光电导层对较长波长的光的灵敏度。
    • 3. 发明授权
    • Electrophotographic member
    • 电子照相成份
    • US4365013A
    • 1982-12-21
    • US287633
    • 1981-07-28
    • Sachio IshiokaEiichi MaruyamaYoshinori ImamuraHirokazu MatsubaraShinkichi Horigome
    • Sachio IshiokaEiichi MaruyamaYoshinori ImamuraHirokazu MatsubaraShinkichi Horigome
    • G03G5/08C23C14/14C23C14/35G03G5/082G03G5/14G03G5/147H01L31/08
    • G03G5/08235G03G5/144G03G5/14704
    • Disclosed is an electrophotographic member having at least a supporter and a photoconductor layer formed mainly of amorphous silicon, characterized in that the amorphous silicon contains at least 50 atomic-% of silicon and at least 1 atomic-% of hydrogen as an average within the layer, and that a part which is at least 10 nm thick from a surface or/and interface of the photoconductor layer toward the interior of the photoconductor layer has a hydrogen content in a range of at least 1 atomic-% to at most 40 atomic-% and an optical forbidden band gap in a range of at least 1.3 eV to at most 2.5 eV and also has the property that an intensity of at least one of peaks having centers at wave numbers of approximately 2,200 cm.sup.-1, approximately 1,140 cm.sup.-1, approximately 1,040 cm.sup.-1, approximately 650 cm.sup.-1, approximately 860 cm.sup.-1 and approximately 800 cm.sup.-1 in an infrared absorption spectrum as are attributed to a bond between silicon and oxygen does not exceed 20% of a higher one of intensities of peaks having centers at wave numbers of approximately 2,000 cm.sup.-1 and approximately 2,100 cm.sup.-1 as are attributed to a bond between silicon and hydrogen. Dark decay characteristics are good, and a satisfactory surface potential can be secured. In addition, the characteristics are stable versus time.
    • 公开了一种具有至少一种支撑体和主要由非晶硅形成的感光体层的电子照相构件,其特征在于,所述无定形硅含有至少50原子%的硅和至少1原子%的氢在该层内的平均值 并且从光电导体层的表面或/和界面朝向光电导体层的内部至少10nm厚的部分具有至少1原子%至至多40原子级的范围内的氢含量, 至少1.3eV至至多2.5eV的范围内的光学禁带宽度,并且还具有以波数约2,200cm-1为中心的至少一个峰的强度,约为1140cm- 在归因于硅和氧之间的键的红外吸收光谱中,约1,040cm -1,约650cm -1,约650cm -1,约860cm -1和约800cm -1不超过硅和氧之间的键的20% 强度o f峰由于硅和氢之间的键而归因于波数约2,000cm -1和约2,100cm -1的中心。 暗衰变特性良好,可以确保令人满意的表面电位。 此外,特性与时间相比是稳定的。
    • 10. 发明授权
    • Photoelectric device and method of producing the same
    • 光电器件及其制造方法
    • US4394749A
    • 1983-07-19
    • US154999
    • 1980-05-30
    • Toshihisa TsukadaYukio TakasakiTadaaki HiraiToru BajiHideaki YamamotoYasuo TanakaEiichi MaruyamaSachio Ishioka
    • Toshihisa TsukadaYukio TakasakiTadaaki HiraiToru BajiHideaki YamamotoYasuo TanakaEiichi MaruyamaSachio Ishioka
    • H01L27/146G11C13/00
    • H01L27/14665
    • A photoelectric device having at least a predetermined impurity region which is disposed in a semiconductor substrate, and a photoelectric conversion portion which is constructed by stacking an electrode layer lying in contact with at least a part of the impurity region, a photoconductive material layer overlying the electrode layer, and a transparent electrode overlying the photoconductive material layer, characterized in that the photoconductive material layer is made of an amorphous chalcogenide material which principally contains Se, is disclosed. It is very favorable that the photoelectric conversion material layer made of the amorphous material principally containing Se is partially doped with Te so as to enhance its sensitivity. The amorphous chalcogenide material is very useful in the following point. In the course of forming, or after having formed, at least one photoconductive layer on a semiconductor body whose surface is uneven, a heat treatment is performed at a temperature of at least the softening point of the photoconductor so as to flatten the layer, whereby discontinuous parts of the photoconductor ascribable to the uneven surface of the semiconductor body can be avoided.
    • 具有至少设置在半导体衬底中的预定杂质区域的光电器件和通过堆叠与至少一部分杂质区域接触的电极层构成的光电转换部分,覆盖 电极层和覆盖光导材料层的透明电极,其特征在于,所述光导材料层由主要包含Se的无定形硫族化物材料制成。 非常有利的是,由主要含有Se的非晶体材料制成的光电转换材料层部分地掺杂有Te以提高其灵敏度。 无定形硫族化物材料在以下方面非常有用。 在形成表面不均匀的半导体本体上形成或形成至少一个光电导层的过程中,至少在光电导体的软化点的温度下进行热处理以使层平坦化,由此 可以避免归因于半导体本体的不平坦表面的感光体的不连续部分。