会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method for avoiding oxide undercut during pre-silicide clean for thin spacer FETs
    • 避免氧化物底切在薄间隔FET预硅化物清洗过程中的方法
    • US07091128B2
    • 2006-08-15
    • US11266855
    • 2005-11-04
    • Atul C. AjmeraAndres BryantPercy V. GilbertMichael A. GribelyukEdward P. MaciejewskiRenee T. MoShreesh Narasimha
    • Atul C. AjmeraAndres BryantPercy V. GilbertMichael A. GribelyukEdward P. MaciejewskiRenee T. MoShreesh Narasimha
    • H01L21/302
    • H01L21/02063H01L21/31116H01L21/823835H01L21/823864H01L29/665H01L29/6653H01L29/6656H01L2924/0002H01L2924/00
    • A method for forming a CMOS device in a manner so as to avoid dielectric layer undercut during a pre-silicide cleaning step is described. During formation of CMOS device comprising a gate stack on a semiconductor substrate surface, the patterned gate stack including gate dielectric below a conductor with vertical sidewalls, a dielectric layer is formed thereover and over the substrate surfaces. Respective nitride spacer elements overlying the dielectric layer are formed at each vertical sidewall. The dielectric layer on the substrate surface is removed using an etch process such that a portion of the dielectric layer underlying each spacer remains. Then, a nitride layer is deposited over the entire sample (the gate stack, the spacer elements at each gate sidewall, and substrate surfaces) and subsequently removed by an etch process such that only a portion of said nitride film (the “plug”) remains. The plug seals and encapsulates the dielectric layer underlying each said spacer, thus preventing the dielectric material from being undercut during the subsequent pre-silicide clean process. By preventing undercut, this invention also prevents the etch-stop film (deposited prior to contact formation) from coming into contact with the gate oxide. Thus, the integration of thin-spacer transistor geometries, which are required for improving transistor drive current, is enabled.
    • 描述了在预硅化物清洁步骤期间以避免电介质层底切的方式形成CMOS器件的方法。 在形成包括半导体衬底表面上的栅极堆叠的CMOS器件的情况下,图案化栅极堆叠包括在具有垂直侧壁的导体下方的栅极电介质,在衬底表面之上和之上形成介电层。 在每个垂直侧壁处形成覆盖在电介质层上的各种氮化物间隔元件。 使用蚀刻工艺去除衬底表面上的电介质层,使得保留每个间隔物下面的介电层的一部分。 然后,在整个样品(栅极堆叠,每个栅极侧壁和衬底表面处的间隔元件)上沉积氮化物层,然后通过蚀刻工艺去除,使得仅一部分所述氮化物膜(“插塞”) 遗迹。 插头密封并封装每个所述间隔件下面的电介质层,从而防止在随后的硅化物前处理过程中电介质材料被切削。 通过防止底切,本发明还防止蚀刻停止膜(在接触形成之前沉积)与栅极氧化物接触。 因此,能够实现提高晶体管驱动电流所需的薄间隔晶体管几何形状的集成。
    • 3. 发明授权
    • Integrable MOS and IGBT devices having trench gate structure
    • 具有沟槽栅极结构的可集成MOS和IGBT器件
    • US5349224A
    • 1994-09-20
    • US85845
    • 1993-06-30
    • Percy V. GilbertGerold W. Neudeck
    • Percy V. GilbertGerold W. Neudeck
    • H01L21/28H01L21/331H01L21/336H01L29/06H01L29/423H01L29/739H01L29/78H01L27/02
    • H01L29/7825H01L21/2815H01L29/66325H01L29/66348H01L29/7398H01L29/0696H01L29/4232H01L29/42376
    • A power semiconductor device which is integrable in an integrated circuit includes a semiconductor body having first and second major opposing surfaces with a first doped region of a first conductivity type therebetween, second and third doped regions of a second conductivity type formed in the first doped region, the second and third doped regions being spaced apart and abutting the first surface, and fourth and fifth doped regions of the first conductivity type respectively formed in the second and third doped regions and abutting the first surface. Sixth and seventh doped regions extend from the first surface into the first region, the sixth region being adjacent to the second and fourth regions and spaced therefrom by an electrically insulative layer, the seventh region being adjacent to the third and fifth regions and spaced therefrom by an insulative layer. The first doped region extends toward the first surface between the sixth and seventh regions and separated therefrom by an electrically insulative layer of variable thickness suitable for voltage blocking. An eighth doped region in the first doped region between the sixth and seventh regions abuts the first surface and forms the drain of a MOSFET or the anode of an IGBT. In fabricating the device, reactive ion etching is used to from a trench in which the sixth and seventh regions are formed. The trench is filled by epitaxially grown semiconductor material in which the eighth doped region is formed. The fourth and fifth doped regions form the source of a MOSFET or a cathode of an IGBT. All ohmic contacts to the device can be made on the first surface.
    • 可集成在集成电路中的功率半导体器件包括具有第一和第二主要相对表面的半导体本体,其间具有第一导电类型的第一掺杂区域,第二导电类型的第二和第三掺杂区域形成在第一掺杂区域中 第二和第三掺杂区域间隔开并邻接第一表面以及分别形成在第二和第三掺杂区域中并邻接第一表面的第一导电类型的第四和第五掺杂区域。 第六和第七掺杂区域从第一表面延伸到第一区域,第六区域与第二和第四区域相邻并且由电绝缘层隔开,第七区域与第三和第五区域相邻并且与第三区域和第五区域间隔开 绝缘层。 第一掺杂区域朝向第六和第七区域之间的第一表面延伸,并且通过适于电压阻挡的可变厚度的电绝缘层与之分离。 在第六和第七区域之间的第一掺杂区域中的第八掺杂区域邻接第一表面并形成MOSFET的漏极或IGBT的阳极。 在制造该器件时,从其中形成第六和第七区域的沟槽使用反应离子蚀刻。 通过外延生长的半导体材料填充沟槽,其中形成第八掺杂区域。 第四和第五掺杂区域形成MOSFET的MOSFET或阴极的源极。 所有欧姆接触器件可以在第一个表面上进行。