会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Voltage protection device
    • 电压保护装置
    • US08278684B1
    • 2012-10-02
    • US11954514
    • 2007-12-12
    • Andrew J. WalkerHelmut Puchner
    • Andrew J. WalkerHelmut Puchner
    • H01L29/66
    • H01L29/7436H01L27/0262H01L29/0603
    • A voltage protection device and method is provided to prevent accidental triggering of an silicon-controlled rectifier (SCR) unless the electrostatic discharge (ESD) is at a predefined threshold above the normal power supply operating voltage or below the ground supply operating voltage. The holding voltage upon the SCR is maintained above the threshold voltage to prevent accidental triggering. The present SCR avoids use of an additional field effect transistor (FET), and avoids relying upon the breakdown of the drain terminal of the FET, but instead programs the amount of holding voltage needed above the power supply voltage using mask-programmability, fuses, or other means for maintaining the holding voltage to a desired range above the power supply voltage. The programmed holding voltage is implemented using a barrier region between the PNP and the NPN of the PNPN junctions of the SCR. In addition to or as an alternative to the barrier region, hole sink junctions can be implemented close to the anode to reduce the substrate resistance in the vicinity of the anode and, therefore, extract holes from their normal target destination.
    • 提供了一种电压保护装置和方法,以防止硅可控整流器(SCR)的意外触发,除非静电放电(ESD)处于高于正常电源工作电压或低于接地电源工作电压的预定阈值。 SCR上的保持电压保持在阈值电压以上,以防止意外触发。 当前的SCR避免使用附加的场效应晶体管(FET),并且避免依赖于FET的漏极端子的击穿,而是使用掩模可编程性,保险丝来编程所需的高于电源电压的保持电压量, 或用于将保持电压维持在高于电源电压的期望范围的其它装置。 编程的保持电压使用PNP与SCR的PNPN结的NPN之间的屏障区域来实现。 除了作为屏障区域的替代方案之外,可以在阳极附近实现空穴接合点,以降低阳极附近的衬底电阻,并因此从其正常目标目的地提取孔。
    • 2. 发明授权
    • Silicon controlled rectifier electrostatic discharge clamp for a high voltage laterally diffused MOS transistor
    • 用于高压横向扩散MOS晶体管的可控硅整流器静电放电钳
    • US07659558B1
    • 2010-02-09
    • US11233959
    • 2005-09-23
    • Andrew J. WalkerHelmut Puchner
    • Andrew J. WalkerHelmut Puchner
    • H01L21/84
    • H01L27/0262H01L29/742H01L29/7436H01L29/87
    • Devices for protecting drain extended metal oxide semiconductor (DEMOS) output transistors from damage caused by electrostatic discharge (ESD) events are provided. In general, the devices include a silicon controlled rectifier (SCR) and a DEMOS transistor configured to breakdown at a lower voltage than a breakdown voltage of the output driver transistor it is configured to protect. The devices further include a pair of ohmic regions configured to trigger the SCR upon breakdown of the drain contact region of the DEMOS transistor and a collection region configured to collect charge generated by the SCR. The transistor, the pair of ohmic regions, and the SCR are respectively configured and arranged to independently set the breakdown voltage of the drain contact region, the trigger voltage of the SCR, and the holding voltage of the SCR. One of the ohmic regions may be coupled to the drain contact region of the transistor.
    • 提供了用于保护漏极延伸金属氧化物半导体(DEMOS)输出晶体管免受静电放电(ESD)事件引起的损坏的器件。 通常,这些器件包括可控硅整流器(SCR)和配置为以比被配置为保护的输出驱动晶体管的击穿电压更低的电压来击穿的DEMOS晶体管。 器件还包括一对欧姆区域,其配置成在DEMOS晶体管的漏极接触区域击穿时触发SCR,以及被配置为收集由SCR产生的电荷的收集区域。 晶体管,一对欧姆区域和SCR分别被配置和设置为独立地设置漏极接触区域的击穿电压,SCR的触发电压和SCR的保持电压。 一个欧姆区域可以耦合到晶体管的漏极接触区域。
    • 3. 发明授权
    • Circuits providing ESD protection to high voltage laterally diffused metal oxide semiconductor (LDMOS) transistors
    • 向高压侧向扩散金属氧化物半导体(LDMOS)晶体管提供ESD保护的电路
    • US07838937B1
    • 2010-11-23
    • US11234255
    • 2005-09-23
    • Andrew J. WalkerHelmut PuchnerHarold M. KutzJames H. Shutt
    • Andrew J. WalkerHelmut PuchnerHarold M. KutzJames H. Shutt
    • H01L23/62
    • H01L27/0266H01L27/0262H01L29/87
    • Circuits including a laterally diffused output driver transistor and a distinct device configured to provide electrostatic discharge (ESD) protection for the laterally diffused output driver transistor are presented. In general, the device configured to provide ESD protection includes a drain extended metal oxide semiconductor transistor (DEMOS) transistor configured to breakdown at a lower voltage than a breakdown voltage of the laterally diffused output driver transistor. The laterally diffused output driver transistor may be a pull-down or a pull-up output driver transistor. The device also includes a silicon controlled rectifier (SCR) configured to inject charge within a semiconductor layer of the circuit upon breakdown of the DEMOS transistor. Moreover, the device includes a region configured to collect the charge injected from the SCR and further includes an ohmic contact region configured to at least partially affect the holding voltage of the SCR.
    • 提供了包括横向扩散的输出驱动晶体管和被配置为为横向扩散输出驱动晶体管提供静电放电(ESD))保护的不同器件的电路。 通常,被配置为提供ESD保护的器件包括漏极延伸的金属氧化物半导体晶体管(DEMOS)晶体管,被配置为在比横向扩散的输出驱动晶体管的击穿电压低的电压下击穿。 横向扩散的输出驱动晶体管可以是下拉或上拉输出驱动晶体管。 该器件还包括被配置为在DEMOS晶体管击穿时在电路的半导体层内注入电荷的可控硅整流器(SCR)。 此外,该器件包括被配置为收集从SCR注入的电荷的区域,并且还包括被配置为至少部分地影响SCR的保持电压的欧姆接触区域。
    • 6. 发明授权
    • Integrated circuit isolation system
    • US06831348B2
    • 2004-12-14
    • US10383031
    • 2003-03-06
    • Helmut PuchnerSheldon Aronowitz
    • Helmut PuchnerSheldon Aronowitz
    • H01L2900
    • H01L21/7621
    • A method of forming a narrow isolation structure in a semiconducting substrate. The isolation structure is a trench that has a bottom and sidewalls, and that is to be filled with an isolating material. The isolating material has desired electrical properties and desired chemical properties, and is substantially reactively grown from the semiconducting substrate. A precursor material layer is formed on the bottom of the trench and on the sidewalls of the trench. The precursor material layer has electrical properties and chemical properties that are substantially similar to the desired electrical properties and the desired chemical properties of the isolating material. A substantial portion of the precursor material layer is removed from the bottom of the trench to expose the semiconducting substrate at the bottom of the trench, while leaving a substantial portion of the precursor material layer on the sidewalls of the trench. The isolating material is reactively grown in the trench, where the isolating material preferentially grows from the exposed semiconducting substrate at the bottom of the trench at a first rate. The precursor material layer at least partially inhibits formation of the isolating material from the semiconducting substrate at the sidewalls of the trench. The isolating material forms from the sidewalls of the trench at a second rate, where the first rate is substantially higher than the second rate. Thus, by forming a precursor layer that inhibits formation of the isolation material at the sidewalls of the trench, the isolation material preferentially grows from the bottom of the trench rather than expanding sideways from the sidewalls of the trench, which tends to widen the isolation structure. Because the precursor layer has properties that are substantially similar to those that are desired in the isolation material, the precursor layer remains at the sidewalls of the trench near the edge of the isolation structure. Therefore, the isolation structure functions as desired, but is narrower than it otherwise would be, if the precursor layer had not been formed.
    • 8. 发明授权
    • Well formation For CMOS devices integrated circuit structures
    • 形成CMOS器件集成电路结构
    • US6144076A
    • 2000-11-07
    • US207395
    • 1998-12-08
    • Helmut PuchnerShih-Fen HuangRuggero Castagnetti
    • Helmut PuchnerShih-Fen HuangRuggero Castagnetti
    • H01L21/762H01L21/8238H01L27/092H01L29/76
    • H01L21/823892H01L21/76237H01L27/0921
    • A multiple well formation is provided in a CMOS region of a semiconductor substrate to provide enhanced latchup protection for one or more CMOS transistors formed in the wells. The structure comprises an N well extending from the substrate surface down into the substrate, a buried P well formed in the substrate beneath the N well, a second P well extending from the substrate surface down into the substrate, and an isolation region formed in the substrate between the N well and the second P well. The buried P well may extend beneath both the N well and the second P well in the substrate. In a preferred embodiment of the invention, the N well and the second P well are each implanted in the substrate at an energy level sufficient to provide a dopant concentration peak in the substrate below the depth of the isolation region to provide punch through protection and to provide a channel stop beneath the isolation region by proving a P-N junction between the N well and P well beneath the isolation region. The dopant concentration level peak of the dopants forming the buried P well in the substrate will be located below the dopant concentration level peak of the N well a minimum distance sufficient to inhibit reduction of the effective depth of the N well, and a maximum distance not exceeding the maximum distance which will still provide enhanced latchup protection to one or more transistors formed in the CMOS region.
    • 在半导体衬底的CMOS区域中提供多阱形成,以为形成在阱中的一个或多个CMOS晶体管提供增强的闭锁保护。 该结构包括从衬底表面向下延伸到衬底中的N阱,在N阱下方的衬底中形成的掩埋P阱,从衬底表面向下延伸到衬底中的第二P阱以及形成在衬底中的隔离区 N阱和第二P阱之间的衬底。 掩埋的P阱可以在衬底中的N阱和第二P阱的下方延伸。 在本发明的一个优选实施方案中,N阱和第二P阱各自以足以在衬底中的掺杂剂浓度峰值(在低于隔离区域的深度)提供掺杂剂浓度峰值的能级注入到衬底中,以提供穿通保护,并且 通过在隔离区之下的N阱和P阱之间提供PN结,在隔离区之下提供通道停止。 在衬底中形成掩埋P阱的掺杂剂的掺杂剂浓度水平峰值将位于N阱的掺杂剂浓度水平峰值以下,其最小距离足以抑制N阱的有效深度的减小,并且最大距离不 超过仍将为在CMOS区域中形成的一个或多个晶体管提供增强的闭锁保护的最大距离。
    • 10. 发明授权
    • Capacitor triggered silicon controlled rectifier
    • 电容器触发可控硅整流器
    • US08129788B1
    • 2012-03-06
    • US11656072
    • 2007-01-22
    • Andrew WalkerHelmut Puchner
    • Andrew WalkerHelmut Puchner
    • H01L23/62
    • H01L27/0262
    • A protection circuit and method are provided for protecting semiconductor devices from electrostatic discharge (ESD). Generally, the ESD protection circuit includes a silicon controlled rectifier (SCR) formed in a substrate and configured to transfer charge from a protected node to a negative power supply, VSS, during an ESD event, and a trigger device to activate transfer of charge by the SCR when a voltage on the protected node reaches a predetermined trigger voltage. The trigger device includes a gated-diode and MOS capacitor formed in a well formed in the substrate, the trigger device configured to inject electrons into the well during charging of the MOS capacitor, forward biasing a node of the SCR, hence allowing fast triggering of the SCR device. The trigger voltage can be set independent of a holding voltage by adjusting the length of the well and area of the capacitor. Other embodiments are also disclosed.
    • 提供保护电路和方法来保护半导体器件免受静电放电(ESD)的影响。 通常,ESD保护电路包括形成在衬底中并被配置为在ESD事件期间将电荷从受保护节点传递到负电源VSS的触发装置,以及用于激活电荷转移的触发装置 当受保护节点上的电压达到预定触发电压时的SCR。 触发装置包括形成在衬底中的阱中形成的栅极二极管和MOS电容器,触发装置被配置为在MOS电容器充电期间向阱中注入电子,向SCR偏置节点,从而允许快速触发 SCR设备。 触发电压可以通过调整阱的长度和电容器的面积而与保持电压无关。 还公开了其他实施例。