会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • CMOS device having reduced spacing between N and P channel
    • CMOS器件具有减小N和P沟道之间的间隔
    • US4829359A
    • 1989-05-09
    • US55558
    • 1987-05-29
    • Kenneth K. OLawrence G. PearceDyer A. Matlock
    • Kenneth K. OLawrence G. PearceDyer A. Matlock
    • H01L27/092
    • H01L27/0927
    • The separation constraint between the respective junctions formed between the drain regions of the complementary transistors and the semiconductor material in which they are formed is obviated by a structure which permits the respective drain regions of the opposite conductivity type transistors to have a reduced (effecting to zero) mutual separation and, at the same time, prevent the depletion regions fomed between the junctions defined by these source regions and the semiconductor material in which they are formed from spreading into contact with one another and thereby shorting the transistors together. This objective is achieved by a structure in which the source regions of the respective P and N channel transistors are formed so as to directly abut against one another and to be contiguous with a layer of buried dielectric isolation therebeneath. The buried dielectric layer extends from the bottom portions of the drain regions to a prescribed depth in each of the P-well region and the N-type substrate, so as to effectively provide a barrier between depletion region associated with the junction defined by the P well and N substrate the depletion regions formed between the N+ drain region and the P-well and the P+ drain region and the N-type substrate.
    • 在互补晶体管的漏极区域和形成它们的半导体材料之间形成的各个结之间的分离约束被允许相反导电型晶体管的相应漏极区域减小(影响为零)的结构所消除 )相互分离,并且同时防止由这些源极区域限定的结与其形成的半导体材料之间的耗尽区域彼此扩散接触,从而将晶体管短路。 该目的是通过这样的结构实现的:其中,各个P沟道晶体管和N沟道晶体管的源极区域形成为彼此直接邻接并且与其旁边的埋入介质隔离层邻接。 掩埋电介质层从漏极区域的底部延伸到每个P阱区域和N型衬底中规定的深度,从而有效地提供与由P形成的连接点相关联的耗尽区域之间的势垒 阱和N衬底在N +漏极区和P阱以及P +漏极区和N型衬底之间形成的耗尽区。
    • 7. 发明授权
    • BICMOS process with low temperature coefficient resistor (TCRL)
    • BICMOS工艺采用低温系数电阻(TCRL)
    • US06812108B2
    • 2004-11-02
    • US10393181
    • 2003-03-19
    • Donald HemmenwayJose DelgadoJohn ButlerAnthony RivoliMichael D. ChurchGeorge V. RouseLawrence G. PearceGeorge Bajor
    • Donald HemmenwayJose DelgadoJohn ButlerAnthony RivoliMichael D. ChurchGeorge V. RouseLawrence G. PearceGeorge Bajor
    • H01L2120
    • H01L28/20H01L21/763H01L21/8249H01L27/0635
    • A low temperature coefficient resistor(TCRL) has some unrepaired ion implant damage. The damaged portion raises the resistance and renders the resistor less sensitive to operating temperature fluctuations. A polysilicon thin film low temperature coefficient resistor and a method for the resistor's fabrication overcomes the coefficient of resistance problem of the prior art, while at the same time eliminating steps from the BiCMOS fabrication process, optimizing bipolar design tradeoffs, and improving passive device isolation. A low temperature coefficient of resistance resistor (TCRL) is formed on a layer of insulation, typically silicon dioxide or silicon nitride, the layer comprising polysilicon having a relatively high concentration of dopants of one or more species. An annealing process is used for the implanted resistor which is shorter than that for typical prior art implanted resistors, leaving some intentional unannealed damage in the resistor. The planned damage gives the TCRL a higher resistance without increasing its temperature coefficient. A process for fabrication of the resistor is used which combines separate spacer oxide depositions, provides buried layers having different diffusion coefficients, incorporates dual dielectric trench sidewalls that double as a polish stop, supplies a spacer structure that controls precisely the emitter-base dimension, and integrates bipolar and CMOS devices with negligible compromise to the features of either type.
    • 低温度系数电阻(TCRL)具有一些未修复的离子注入损伤。 损坏部分会提高电阻,使电阻对工作温度波动较不敏感。 多晶硅薄膜低温系数电阻器和电阻器制造方法克服了现有技术的电阻系数问题,同时消除了BiCMOS制造工艺的步骤,优化了双极设计的权衡,改善了无源器件隔离。 在绝缘层(通常为二氧化硅或氮化硅)上形成电阻电阻器(TCRL)的低温度系数,该层包含具有相对高浓度的一种或多种物质的掺杂剂的多晶硅。 对于注入电阻器而言,使用退火工艺,其比典型的现有技术的注入电阻器的退火工艺短,从而在电阻器中留下一些有意的未退火损坏。 计划的损坏使TCRL具有更高的阻力,而不增加其温度系数。 使用制造电阻器的方法,其组合分开的间隔氧化物沉积,提供具有不同扩散系数的掩埋层,并入双重介质沟槽侧壁作为抛光停止点,提供精确控制发射极基底尺寸的间隔结构,以及 将双极和CMOS器件集成到任何一种类型的特性上都可忽略不计。
    • 8. 发明授权
    • BiCMOS process with low temperature coefficient resistor (TCRL)
    • BiCMOS工艺与低温系数电阻(TCRL)
    • US06798024B1
    • 2004-09-28
    • US09607080
    • 2000-06-29
    • Donald HemmenwayJose DelgadoJohn ButlerAnthony RivoliMichael D. ChurchGeorge V. RouseLawrence G. PearceGeorge S. Bajor
    • Donald HemmenwayJose DelgadoJohn ButlerAnthony RivoliMichael D. ChurchGeorge V. RouseLawrence G. PearceGeorge S. Bajor
    • H01L2976
    • H01L28/20H01L21/763H01L21/8249H01L27/0635
    • A low temperature coefficient resistor (TCRL) has some unrepaired ion implant damage. The damaged portion raises the resistance and renders the resistor less sensitive to operating temperature fluctuations A polysilicon thin film low temperature coefficient resistor and a method for the resistor's fabrication overcomes the coefficient of resistance problem of the prior art, while at the same time eliminating steps from the BiCMOS fabrication process, optimizing bipolar design tradeoffs, and improving passive device isolation. A low temperature coefficient of resistance resistor (TCRL) is formed on a layer of insulation, typically silicon dioxide or silicon nitride, the layer comprising polysilicon having a relatively high concentration of dopants of one or more species. An annealing process is used for the implanted resistor which is shorter than that for typical prior art implanted resistors, leaving some intentional unannealed damage in the resistor. The planned damage gives the TCRL a higher resistance without increasing its temperature coefficient. A process for fabrication of the resistor is used which combines separate spacer oxide depositions, provides buried layers having different diffusion coefficients, incorporates dual dielectric trench sidewalls that double as a polish stop, supplies a spacer structure that controls precisely the emitter-base dimension, and integrates bipolar and CMOS devices with negligible compromise to the features of either type.
    • 低温度系数电阻(TCRL)具有一些未修复的离子注入损伤。 损坏部分提高电阻并使电阻器对工作温度波动较不敏感多晶硅薄膜低温度系数电阻器和电阻器制造方法克服了现有技术的电阻问题系数,同时消除了步骤 BiCMOS制造工艺,优化双极设计权衡,改善无源器件隔离。 在绝缘层(通常为二氧化硅或氮化硅)上形成电阻电阻器(TCRL)的低温度系数,该层包含具有相对高浓度的一种或多种物质的掺杂剂的多晶硅。 对于注入电阻器而言,使用退火工艺,其比典型的现有技术的注入电阻器的退火工艺短,从而在电阻器中留下一些有意的未退火损坏。 计划的损坏使TCRL具有更高的阻力,而不增加其温度系数。 使用制造电阻器的方法,其组合分开的间隔氧化物沉积,提供具有不同扩散系数的掩埋层,并入双重介质沟槽侧壁作为抛光停止点,提供精确控制发射极基底尺寸的间隔结构,以及 将双极和CMOS器件集成到任何一种类型的特性上都可忽略不计。
    • 9. 发明授权
    • Local oxidation process for high field threshold applications
    • 用于高场阈值应用的局部氧化工艺
    • US5580816A
    • 1996-12-03
    • US481116
    • 1995-06-07
    • Donald F. HemmenwayLawrence G. Pearce
    • Donald F. HemmenwayLawrence G. Pearce
    • H01L21/762H01L21/76
    • H01L21/762H01L21/76216
    • A method for electrically isolating semiconductor devices in an integrated circuit structure with high field threshold, low defect level regions. The semiconductor structure includes a device layer predominantly comprising lattice silicon with a surface suitable for device formation. Multiple device regions are defined and field regions are defined for electrically isolating the device regions from one another. Dopant species are implanted to create a channel stop adjacent two of the device regions. The implant is of sufficient energy and concentration to impart within the device layer nucleation sites of the type known to result in stacking faults during oxide growth conditions. A thickness of thermally grown silicon dioxide is formed in the field regions by first thermally processing the integrated circuit structure to remove nucleation sites from the device layer and form a minor portion of the field oxide thickness. Subsequently a major portion of the oxide thickness is formed under relatively fast growth conditions.
    • 一种用于在具有高场阈值,低缺陷水平区域的集成电路结构中电绝缘半导体器件的方法。 半导体结构包括主要包括具有适于器件形成的表面的晶格硅的器件层。 定义了多个器件区域,并且限定了用于将器件区域彼此电隔离的场区域。 植入掺杂物质以在相邻两个器件区域之间产生通道阻挡。 植入物具有足够的能量和浓度以赋予在氧化物生长条件下已知导致堆垛层错的类型的器件层成核位点。 通过首先热处理集成电路结构以从器件层去除成核位置并形成场氧化物厚度的一小部分,在场区中形成热生长二氧化硅的厚度。 随后在相对较快的生长条件下形成氧化物厚度的主要部分。
    • 10. 发明授权
    • High voltage, junction isolation semiconductor device having dual
conductivity tape buried regions and its process of manufacture
    • 具有双导电带掩埋区域的高压,结隔离半导体器件及其制造工艺
    • US5567978A
    • 1996-10-22
    • US383261
    • 1995-02-03
    • Lawrence G. Pearce
    • Lawrence G. Pearce
    • H01L21/331H01L21/74H01L21/761H01L29/00
    • H01L29/66272H01L21/74H01L21/761Y10S148/01Y10S148/011
    • A two masking level process for a dual buried region epitaxial architecture forms a first masking layer on a surface of a P type substrate. The first masking layer exposes first and second surface portions of the substrate for N+ and P+ buried regions. N type impurities are introduced into the substrate through the first masking layer, so as to form N+ doped regions. A second masking layer is then selectively formed on the first masking layer, such that the second masking layer masks the first aperture, but exposes a second portion of the first masking layer that both includes and surrounds the second aperture. Boron impurities are then introduced through the exposed second aperture of the first masking layer, to a P+ doping concentration. That portion of the first masking layer surrounding the second aperture is removed, and boron impurities are then introduced into exposed second and third surface portions of the substrate, thereby forming a third buried region of the second conductivity type that is adjacent to the second doped region. The composite mask is removed from the substrate, and an N type layer is grown. Due to differences in diffusion coefficients, the P dopant (boron) in the second and third buried regions outruns the N dopant in the second buried region, resulting in the formation of an N+ buried region that is encapsulated in a P+ buried region. The P+ buried region is, in turn, laterally surrounded by a P-type buried region, so as to provide the desired compensation of N ions that are autodoped from the first N+ buried region in the epitaxial layer.
    • 用于双掩埋区域外延结构的两个掩模级处理在P型衬底的表面上形成第一掩模层。 第一掩蔽层暴露衬底的第一和第二表面部分用于N +和P +掩埋区域。 通过第一掩模层将N型杂质引入衬底中,以形成N +掺杂区域。 然后在第一掩蔽层上选择性地形成第二掩模层,使得第二掩蔽层掩蔽第一孔,但暴露第一掩蔽层的第二部分,其包括并包围第二孔。 然后将硼杂质通过第一掩模层的暴露的第二孔引入P +掺杂浓度。 去除围绕第二孔的第一掩蔽层的那部分,然后将硼杂质引入衬底的暴露的第二和第三表面部分中,从而形成与第二掺杂区相邻的第二导电类型的第三掩埋区 。 从衬底上去除复合掩模,并生长N型层。 由于扩散系数的差异,第二和第三掩埋区域中的P掺杂剂(硼)超出第二掩埋区域中的N掺杂剂,导致形成封装在P +掩埋区域中的N +掩埋区域。 P +掩埋区又被P型掩埋区横向围绕,从而提供从外延层中的第一N +掩埋区自动掺杂的N离子的期望补偿。