会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method for manufacturing dummy gate in gate-last process and dummy gate in gate-last process
    • 最后一个进程中的伪栅极的制造方法和栅极最后工艺中的虚拟栅极的制造方法
    • US09419095B2
    • 2016-08-16
    • US14119864
    • 2012-12-12
    • Chunlong LiJunfeng LiJiang YanChao Zhao
    • Chunlong LiJunfeng LiJiang YanChao Zhao
    • H01L21/338H01L29/66H01L29/423H01L29/51H01L21/28
    • H01L29/66545H01L21/28123H01L29/42364H01L29/513H01L29/518
    • A method for manufacturing a dummy gate in a gate-last process and a dummy gate in a gate-last process are provided. The method includes: providing a semiconductor substrate; growing a gate oxide layer on the semiconductor substrate; depositing bottom-layer amorphous silicon on the gate oxide layer; depositing an ONO structured hard mask on the bottom-layer amorphous silicon; depositing top-layer amorphous silicon on the ONO structured hard mask; depositing a hard mask layer on the top-layer amorphous silicon; forming photoresist lines on the hard mask layer, and trimming the formed photoresist lines so that the trimmed photoresist lines a width less than or equal to 22 nm; and etching the hard mask layer, the top-layer amorphous silicon, the ONO structured hard mask and the bottom-layer amorphous silicon in accordance with the trimmed photoresist lines, and removing the photoresist lines, the hard mask layer and the top-layer amorphous silicon.
    • 提供了一种在门最后处理中制造伪栅极的方法和在栅极最后工艺中的伪栅极。 该方法包括:提供半导体衬底; 在半导体衬底上生长栅极氧化层; 在栅极氧化物层上沉积底层非晶硅; 在底层非晶硅上沉积ONO结构的硬掩模; 在ONO结构化的硬掩模上沉积顶层非晶硅; 在顶层非晶硅上沉积硬掩模层; 在硬掩模层上形成光致抗蚀剂线,并修整所形成的光致抗蚀剂线,使得修整的光致抗蚀剂线的宽度小于或等于22nm; 并根据修整的光致抗蚀剂线蚀刻硬掩模层,顶层非晶硅,ONO结构的硬掩模和底层非晶硅,并除去光致抗蚀剂线,硬掩模层和顶层无定形 硅。
    • 2. 发明授权
    • Solid hole array and method for forming the same
    • 固体孔阵列及其形成方法
    • US09136160B2
    • 2015-09-15
    • US13697372
    • 2012-07-31
    • Lijun DongChao Zhao
    • Lijun DongChao Zhao
    • H01L23/498H01L21/768H01L23/14H01L21/48
    • H01L21/76802H01L21/486H01L23/147H01L23/49827H01L2924/0002H01L2924/00
    • A solid hole array and a method for forming the same are disclosed. The solid hold array may comprise: substrate with a via; a top hole array base formed on a top surface of the substrate and a bottom hole array base formed on a bottom surface of the substrate, wherein a front hole is located in the top hole array base at a place corresponding to the via; and top protection layer formed on a surface and sidewalls of the top hole array base and a bottom protection layer formed on a surface of the bottom hole array base, wherein a rear window is located in the bottom hole array base and the bottom protection layer at a place corresponding to the via.
    • 公开了一种固体孔阵列及其形成方法。 固体保持阵列可以包括:具有通孔的基底; 形成在所述基板的上表面上的顶孔阵列基座和形成在所述基板的底面的底孔阵列基座,其中,在与所述通孔相对应的位置处,所述顶孔阵列基座中的前孔位于所述顶孔阵列基底中; 以及形成在顶孔阵列基底的表面和侧壁上的顶部保护层和形成在底部孔阵列基底的表面上的底部保护层,其中后部窗口位于底部孔阵列基底中,底部保护层位于底部保护层 一个对应于通道的地方。
    • 3. 发明授权
    • Semiconductor device and manufacturing method thereof
    • 半导体装置及其制造方法
    • US09012965B2
    • 2015-04-21
    • US13379120
    • 2011-04-22
    • Jun LuoChao Zhao
    • Jun LuoChao Zhao
    • H01L29/76H01L29/47H01L29/66H01L29/78H01L21/285H01L21/265
    • H01L29/47H01L21/26506H01L21/28518H01L29/66545H01L29/66643H01L29/7839
    • The invention discloses a novel MOSFET device fabricated by a gate last process and its implementation method, the device comprising: a substrate; a gate stack structure located on a channel region in the substrate, on either side of which is eliminated the conventional isolation spacer; an epitaxially grown ultrathin metal silicide constituting a source/drain region. Wherein the device eliminates the high resistance region below the conventional isolation spacer; a dopant segregation region with imlanted ions is formed between the source/drain and the channel region, which decreases the Schottky barrier height between the metal silicide source/drain and the channel. At the same time, the epitaxially grown metal silicide can withstand a second high-temperature annealing used for improving the performance of a high-k gate dielectric material, which further improves the performance of the device. The MOSFET according to the invention reduces the parasitic resistance and capacitance greatly and thereby decreases the RC delay, thus improving the switching performance of the MOSFET device significantly.
    • 本发明公开了一种通过门最后工艺制造的新型MOSFET器件及其实现方法,该器件包括:衬底; 栅极叠层结构位于衬底的沟道区上,其任一侧消除了传统隔离间隔物; 构成源极/漏极区域的外延生长的超薄金属硅化物。 其中该器件消除了传统隔离间隔物下面的高电阻区域; 在源极/漏极和沟道区之间形成具有经过离子注入的掺杂剂偏析区域,这降低了金属硅化物源极/漏极与沟道之间的肖特基势垒高度。 同时,外延生长的金属硅化物可以承受用于改善高k栅介质材料性能的第二高温退火,这进一步提高了器件的性能。 根据本发明的MOSFET大大降低了寄生电阻和电容,从而降低了RC延迟,从而显着提高了MOSFET器件的开关性能。
    • 4. 发明授权
    • Semiconductor device with gate stacks having stress and method of manufacturing the same
    • 具有应力的栅极堆叠的半导体器件及其制造方法
    • US08994119B2
    • 2015-03-31
    • US13520618
    • 2012-04-11
    • Huaxiang YinZuozhen FuQiuxia XuChao ZhaoDapeng Chen
    • Huaxiang YinZuozhen FuQiuxia XuChao ZhaoDapeng Chen
    • H01L27/088H01L21/8236H01L21/8238H01L29/49H01L29/78H01L29/51H01L29/66
    • H01L21/823807H01L21/823842H01L29/4966H01L29/517H01L29/518H01L29/66545H01L29/7845
    • The present invention discloses a semiconductor device, comprising substrates, a plurality of gate stack structures on the substrate, a plurality of gate spacer structures on both sides of each gate stack structure, a plurality of source and drain regions in the substrate on both sides of each gate spacer structure, the plurality of gate spacer structures comprising a plurality of first gate stack structures and a plurality of second gate stack structures, wherein each of the first gate stack structures comprises a first gate insulating layer, a first work function metal layer, a second work function metal diffusion blocking layer, and a gate filling layer; Each of the second gate stack structures comprises a second gate insulating layer, a first work function metal layer, a second work function metal layer, and a gate filling layer, characterized in that the first work function metal layer has a first stress, and the gate filling layer has a second stress. Two metal gate layers of different types and/or intensity of stress are formed, respectively, thus different stresses are applied to the channel regions of different MOSFETs effectively and accurately, the device carrier mobility is enhanced simply and efficiently, and the device performance is also enhanced.
    • 本发明公开了一种半导体器件,包括衬底,衬底上的多个栅极堆叠结构,在每个栅极堆叠结构的两侧上的多个栅极间隔结构,在衬底的两侧的多个源极和漏极区域 每个栅极间隔结构,所述多个栅极间隔结构包括多个第一栅极堆叠结构和多个第二栅极堆叠结构,其中所述第一栅极堆叠结构中的每一个包括第一栅极绝缘层,第一功函数金属层, 第二功函数金属扩散阻挡层和栅极填充层; 每个第二栅极堆叠结构包括第二栅极绝缘层,第一功函数金属层,第二功函数金属层和栅极填充层,其特征在于,第一功函数金属层具有第一应力,并且 栅极填充层具有第二应力。 形成不同类型和/或应力强度的两个金属栅极层,从而有效且准确地对不同MOSFET的沟道区域施加不同的应力,简化高效地提高器件载流子迁移率,器件性能也 增强。
    • 5. 发明申请
    • METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
    • 制造半导体器件的方法
    • US20140302644A1
    • 2014-10-09
    • US14361944
    • 2012-03-23
    • Jun LuoChao ZhaoHuicai ZhongJunfeng LiDapeng Chen
    • Jun LuoChao ZhaoHuicai ZhongJunfeng LiDapeng Chen
    • H01L21/28H01L21/283H01L29/66
    • H01L21/28097H01L21/283H01L29/66477H01L29/665H01L29/6659H01L29/66772H01L29/7833
    • The present invention discloses a method for manufacturing a semiconductor device, comprising: forming a gate stacked structure on a silicic substrate; depositing a Nickel-based metal layer on the substrate and the gate stacked structure; performing a first annealing so that the silicon in the substrate reacts with the Nickel-based metal layer to form a Ni-rich phase of metal silicide; performing an ion implantation by implanting doping ions into the Ni-rich phase of metal silicide; performing a second annealing so that the Ni-rich phase of metal to silicide is transformed into a Nickel-based metal silicide source/drain, and meanwhile, forming a segregation region of the doping ions at an interface between the Nickel-based metal silicide source/drain and the substrate. The method for manufacturing the semiconductor device according to the present invention performs the annealing after implanting the doping ions into the Ni-rich phase of metal silicide, thereby improving the solid solubility of the doping ions and forming a segregation region of highly concentrated doping ions, thus the SBH between the Nickel-based metal silicide and the silicon channel is effectively reduced, and the driving capability of the device is improved.
    • 本发明公开了一种制造半导体器件的方法,包括:在硅衬底上形成栅层叠结构; 在基板上沉积镍基金属层和栅极堆叠结构; 进行第一退火,使得衬底中的硅与镍基金属层反应形成金属硅化物的富Ni相; 通过将掺杂离子注入到金属硅化物的富Ni相中来进行离子注入; 进行第二退火,使得金属与硅化物的富Ni相转变为镍基金属硅化物源极/漏极,同时在镍基金属硅化物源之间的界面处形成掺杂离子的偏析区域 /漏极和衬底。 根据本发明的制造半导体器件的方法在将掺杂离子注入到金属硅化物的富Ni相中之后进行退火,从而提高掺杂离子的固溶度并形成高浓度掺杂离子的偏析区域, 因此有效地降低了镍基金属硅化物与硅通道之间的SBH,提高了器件的驱动能力。
    • 8. 发明授权
    • Method for improving uniformity of chemical-mechanical planarization process
    • 改善化学机械平面化工艺均匀性的方法
    • US08647987B2
    • 2014-02-11
    • US13698283
    • 2012-06-12
    • Tao YangChao ZhaoJunfeng Li
    • Tao YangChao ZhaoJunfeng Li
    • H01L21/302H01L21/461H01L21/311
    • H01L21/30625H01L21/31053H01L21/31056H01L22/26H01L29/66545H01L2924/0002H01L2924/00
    • The invention provides a method for improving uniformity of chemical-mechanical planarization process, comprising the steps of: forming features on a substrate; forming a first dielectric isolation layer between the features; planarizing the first dielectric isolation layer until the features are exposed, causing the first dielectric isolation layer between the features to have a recess depth; forming a second dielectric isolation layer on the features and the first dielectric isolation layer, whereby reducing the difference in height between the second dielectric isolation layer between the features and the second dielectric isolation layer on the top of the features; planarizing the second dielectric isolation layer until the features are exposed. According to the method for improving uniformity of chemical-mechanical planarization process of the invention, a dielectric isolation layer is formed again after grinding the dielectric isolation layer on the top of the features, such that the difference in height between the dielectric layer between the features and the dielectric layer on the top of the features is effectively reduced, and the recess of the features is compensated, the within-in-die uniformity is effectively improved.
    • 本发明提供了一种改善化学机械平面化工艺的均匀性的方法,包括以下步骤:在基底上形成特征; 在所述特征之间形成第一绝缘隔离层; 平面化第一介电隔离层直到特征被暴露,使得特征之间的第一介电隔离层具有凹陷深度; 在特征和第一介电隔离层上形成第二绝缘隔离层,从而减小特征之间的第二介电隔离层与特征顶部的第二介电隔离层之间的高度差; 平坦化第二介电隔离层,直到特征被暴露。 根据本发明的化学机械平面化工艺的均匀性提高方法,在研磨特征顶部的介电隔离层之后再次形成介电隔离层,使得介电层之间的高度差 并且功能顶部的电介质层被有效地减少,并且特征的凹部得到补偿,从而有效地提高了模内均匀性。
    • 9. 发明申请
    • SOLID HOLE ARRAY AND MANUFACTURE METHOD THEREOF
    • 固体盖阵列及其制造方法
    • US20140001646A1
    • 2014-01-02
    • US13697372
    • 2012-07-31
    • Lijun DongChao Zhao
    • Lijun DongChao Zhao
    • H01L21/768H01L23/498
    • H01L21/76802H01L21/486H01L23/147H01L23/49827H01L2924/0002H01L2924/00
    • A solid hole array and a manufacture method thereof are provided. The method for manufacturing the solid hole array comprises: forming a top hole array base and a bottom hole array base on a top surface and a bottom surface of a substrate respectively; forming a front hole in the top hole array base; forming a top protection layer on the substrate with the top hole array base, and forming a bottom protection layer on the bottom hole array base; forming a rear window in the bottom hole array base and the bottom protection layer; and etching through the substrate by alkali corrosion to connect the front hole with the rear window. In addition, the present disclosure also provides a solid hole array. Using the method of the present disclosure, the intensity of the front film is enhanced, the process steps are simplified, the cost is decreased, and a large scale manufacture is more likely.
    • 提供了一种固体孔阵列及其制造方法。 固体孔阵列的制造方法包括:分别在衬底的顶表面和底表面上形成顶孔阵列基底和底孔阵列基底; 在顶孔阵列基底中形成前孔; 在顶孔阵列基底上形成顶层保护层,在底孔阵列基底上形成底层保护层; 在底孔阵列基底和底部保护层中形成后窗; 并通过碱腐蚀蚀刻基板,将前孔与后窗连接起来。 此外,本公开还提供了一种固体孔阵列。 利用本公开的方法,提高了前膜的强度,简化了工艺步骤,降低了成本,并且更有可能进行大规模制造。