会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Method and apparatus for reducing deposition variation by modeling post-clean chamber performance
    • 通过建模后清洁室性能来减少沉积变化的方法和装置
    • US06512991B1
    • 2003-01-28
    • US09614312
    • 2000-07-12
    • Bradley M. DavisAllen L. EvansCraig W. Christian
    • Bradley M. DavisAllen L. EvansCraig W. Christian
    • G01K120
    • G01K7/42
    • A method for reducing deposition thickness variation in a processing tool comprises storing a post-clean performance model of the processing tool; receiving at least one of a showerhead age and a tool idle time associated with the processing tool as an input parameter; determining temperature control parameters based on the input parameter and the post-clean performance model; and modifying an operating recipe of the processing tool based on the temperature control parameters. A processing system includes a processing tool and an automatic process controller. The processing tool is adapted to process wafers in accordance with an operating recipe. The automatic process controller is adapted to store a post-clean performance model of the processing tool, receive at least one of a showerhead age and a tool idle time associated with the processing tool as an input parameter, determine temperature control parameters based on the input parameter and the post-clean performance model, and modify the operating recipe of the processing tool based on the temperature control parameters.
    • 一种用于减少处理工具中的沉积厚度变化的方法包括:存储处理工具的后清洁性能模型; 接收与处理工具相关联的喷头年龄和工具空闲时间中的至少一个作为输入参数; 根据输入参数和清洁后性能模型确定温度控制参数; 以及基于所述温度控制参数来修改所述处理工具的操作配方。 处理系统包括处理工具和自动过程控制器。 处理工具适于根据操作配方处理晶片。 自动过程控制器适于存储处理工具的后清洁性能模型,接收与处理工具相关联的喷头年龄和工具空闲时间中的至少一个作为输入参数,基于输入来确定温度控制参数 参数和清洁后性能模型,并根据温度控制参数修改加工工具的操作配方。
    • 5. 发明授权
    • Control mechanism for matching process parameters in a multi-chamber process tool
    • 在多室工艺工具中匹配工艺参数的控制机制
    • US06684122B1
    • 2004-01-27
    • US09476892
    • 2000-01-03
    • Craig W. ChristianBradley M. DavisAllen L. Evans
    • Craig W. ChristianBradley M. DavisAllen L. Evans
    • G06F1900
    • H01L21/67276G05B19/41875G05B2219/32182G05B2219/37576G05B2219/45031Y02P90/16Y02P90/22
    • The invention, in its various aspects and embodiments, is a method and apparatus for controlling the operation of a multi-chamber process tool in a semiconductor fabrication process. The method comprises setting a plurality of operation parameters for the conduct of a predetermined operation in each of a plurality of process chambers in a multi-chamber process tool; performing the predetermined operation in each of the process chambers; examining a physical characteristic of a processed wafer from each of the process chambers; determining from the examined physical characteristics whether the operating conditions in each of the process chambers match; and resetting at least one operating parameter so that the operating conditions in each of the process chambers will match. The apparatus comprises a processing tool, a review station, and a tool controller. The processing tool includes a plurality of process chambers and an operation controller. Each process chamber is capable of performing a predetermined operation defined by a plurality of operating parameters. The operation controller is capable of setting the operating parameter for each of the process chambers. The review station is capable of examining a physical characteristic of a processed wafer from each of the process chambers and outputting the results of the examination. The tool controller is capable of receiving the examination result, determining whether the operating parameters of the process chambers match, and instructing the operation controller to reset at least some of the operating parameters responsive thereto to match the operating conditions in the process chambers.
    • 本发明在其各个方面和实施例中是用于在半导体制造工艺中控制多室工艺工具的操作的方法和装置。 该方法包括在多室处理工具中设置用于在多个处理室中的每一个中执行预定操作的多个操作参数; 在每个处理室中执行预定操作; 从每个处理室检查经处理的晶片的物理特性; 根据所检查的物理特性确定每个处理室中的操作条件是否匹配; 并且重置至少一个操作参数,使得每个处理室中的操作条件将匹配。 该装置包括处理工具,检查站和工具控制器。 处理工具包括多个处理室和操作控制器。 每个处理室能够执行由多个操作参数定义的预定操作。 操作控制器能够设置每个处理室的操作参数。 检查站能够从每个处理室检查处理的晶片的物理特性,并输出检查结果。 工具控制器能够接收检查结果,确定处理室的操作参数是否匹配,并指示操作控制器响应于此来重置至少一些操作参数以匹配处理室中的操作条件。
    • 7. 发明授权
    • Sense amplifier for content addressable memory
    • 用于内容可寻址存储器的感应放大器
    • US06442054B1
    • 2002-08-27
    • US09866056
    • 2001-05-24
    • Allen L. EvansWen-Kuan Fang
    • Allen L. EvansWen-Kuan Fang
    • G11C1500
    • G11C7/062G11C15/04
    • A sense amplifier includes a first transistor coupled between a match line of a CAM array and a VDD supply terminal. The match line is pre-charged through the first transistor to a voltage equal to a reference voltage minus the first transistor threshold voltage, VT1. The match line is coupled to the source of a second transistor, which has a threshold voltage VT2, wherein VT2>VT1. A dummy line of the CAM array, which is coupled to the gate of the second transistor, is pre-charged to the reference voltage. A storage node, which is coupled to the drain of the second transistor, is pre-charged to the VDD supply voltage. A non-match condition causes the voltage on the match line to be pulled down. When the voltage on the dummy line exceeds the voltage on the match line by VT2, the second transistor turns on, thereby pulling down the storage node.
    • 读出放大器包括耦合在CAM阵列的匹配线和VDD电源端之间的第一晶体管。 匹配线通过第一晶体管预充电到等于参考电压减去第一晶体管阈值电压VT1的电压。 匹配线耦合到具有阈值电压VT2的第二晶体管的源极,其中VT2> VT1。 耦合到第二晶体管的栅极的CAM阵列的虚拟线被预充电到参考电压。 耦合到第二晶体管的漏极的存储节点被预充电到VDD电源电压。 不匹配条件导致匹配线上的电压被拉低。 当虚线上的电压超过匹配线上的电压VT2时,第二晶体管导通,从而拉下存储节点。
    • 9. 发明授权
    • Polysilicon diffusion doping method employing a deposited doped oxide
layer with a highly uniform thickness
    • 采用具有高度均匀厚度的沉积掺杂氧化物层的多晶硅扩散掺杂方法
    • US5895259A
    • 1999-04-20
    • US647637
    • 1996-05-15
    • W. Mark CarterAllen L. EvansJohn G. Zvonar
    • W. Mark CarterAllen L. EvansJohn G. Zvonar
    • H01L21/28H01L21/3215H01L21/44
    • H01L21/28035H01L21/32155Y10S148/051Y10S438/914Y10S438/915
    • A polysilicon diffusion doping method which employs a deposited dopant-rich oxide layer with a highly uniform distribution of dopant atoms and thickness. Polysilicon layers 1,500 angstroms thick have been doped, achieving average resistance values of 60 ohms and non-uniformity values of 5 percent. Resistance values were measured using the four-point probe method with probe spacings of 0.10 cm. After a polysilicon layer has been formed upon a surface of a silicon wafer, a dopant-rich oxide layer is deposited upon the polysilicon layer at reduced pressure. The dopant-rich oxide layer is deposited, and serves as a source of dopant atoms during the subsequent diffusion process. The dopant-rich oxide layer is a phosphosilicate glass (PSG) including phosphorus pentoxide (P.sub.2 O.sub.5) and phosphorus trioxide (P.sub.2 O.sub.3) and deposited using a PECVD technique. Following deposition of the dopant-rich oxide layer, the silicon wafer is heated to drive dopant atoms from the dopant-rich oxide layer into the underlying polysilicon layer, and to electrically activate the dopant atoms within the polysilicon layer. The presence of electrically active dopant atoms within the polysilicon layer lowers the electrical resistivity of the polysilicon layer. After the heating step, the dopant-rich oxide layer is removed.
    • 一种多晶硅扩散掺杂方法,其使用具有掺杂剂原子和厚度的高度均匀分布的沉积的掺杂剂浓的氧化物层。 已经掺杂了1500埃厚的多晶硅层,实现了60欧姆的平均电阻值和5%的非均匀性值。 使用探针间距为0.10cm的四点探针法测量电阻值。 在硅晶片的表面上形成多晶硅层之后,在减压下在多晶硅层上沉积富含掺杂剂的氧化物层。 沉积富掺杂剂的氧化物层,并且在随后的扩散过程中用作掺杂剂原子的源。 富含掺杂剂的氧化物层是包含五氧化二磷(P 2 O 5)和三氧化磷(P 2 O 3)的磷硅酸盐玻璃(PSG)并使用PECVD技术沉积。 在沉积掺杂剂富氧化物层之后,加热硅晶片以将掺杂剂原子从富含掺杂剂的氧化物层驱动到下面的多晶硅层中,并激活多晶硅层内的掺杂剂原子。 多晶硅层内电活性掺杂剂原子的存在降低了多晶硅层的电阻率。 在加热步骤之后,去除富含掺杂剂的氧化物层。