会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • IMAGE ANALYSIS
    • 图像分析
    • WO2004044845A3
    • 2004-08-26
    • PCT/GB0304841
    • 2003-11-10
    • QINETIQ LTDHADDON JOHN FRANCISWATSON SHARON KATRINA
    • HADDON JOHN FRANCISWATSON SHARON KATRINA
    • G06T5/00G06T7/00G06T7/40G06F19/00
    • G06K9/0014G06K9/00147G06T7/0012G06T7/11G06T7/136G06T7/45G06T2207/10056G06T2207/10116G06T2207/30024G06T2207/30068G06T2207/30096
    • A method for the automated analysis of digital images, particularly for the purpose of assessing the presence and severity of cancer in breast tissue based on the relative proportions of tubule formations and epithelial cells identified in digital images of histological slides. The method includes the step of generating a property co-occurrence matrix (PCM) from some or all of the pixels in the image, using the properties of local mean and local standard deviation of intensity in neighbourhoods of the selected pixels, and segmenting the image by labelling the selected pixels as belonging to specified classes based upon analysis of the PCM. In this way relatively dark and substantially textured regions representing epithelial cells in the image can be distinguished from lighter and more uniform background regions. Other steps include identifying groups of pixels representing duct cells in the image based on intensity, shape and size criteria, dilating those pixels into surrounding groups labelled as epithelial cells by a dimension to correspond to an overall tubule formation, and calculating a metric based on the ratio of the number of duct pixels after such dilation to the total number of duct and epithelial pixels. Other uses for the method could include the analysis of mineral samples containing certain types of crystal formations.
    • 一种用于数字图像的自动分析的方法,特别是基于在组织学载玻片的数字图像中鉴定的小管形成和上皮细胞的相对比例来评估乳腺组织中癌症的存在和严重性的目的。 该方法包括使用图像中的一些或全部像素产生属性共生矩阵(PCM)的步骤,使用所选像素的邻域中的强度的局部均值和局部标准偏差的属性,以及分割图像 通过基于PCM的分析将所选择的像素标记为属于指定类。 以这种方式,可以将表示图像中的上皮细胞的相对较暗和基本纹理的区域与较轻和更均匀的背景区域区分开。 其他步骤包括基于强度,形状和尺寸标准来识别表示图像中的管道细胞的像素组,将标记为上皮细胞的周围组的尺寸扩大为对应于整个小管形成的尺寸,以及基于 这种扩张后的管道像素数与管道和上皮像素的总数之比。 该方法的其他用途可能包括含有某些类型晶体结构的矿物样品的分析。
    • 7. 发明申请
    • INTEGRATED PHENOTYPING EMPLOYING IMAGE TEXTURE FEATURES.
    • 集成的相机采用图像纹理特征。
    • WO2014080305A2
    • 2014-05-30
    • PCT/IB2013059663
    • 2013-10-25
    • KONINKL PHILIPS NV
    • BANERJEE NILANJANADIMITROVA NEVENKAVARADAN VINAYKAMALAKARAN SITHARTHANJANEVSKI ANGELMAITY SAYAN
    • G06T7/40
    • G06T7/45G06K9/6267G06T2207/10088G06T2207/30068
    • Image texture feature values are computed for a set of image texture features from an image of an anatomical feature of interest in a subject, and the subject is classified respective to a molecular feature of interest based on the computed image texture feature values. The image texture feature values may be computed from one or more gray level co-occurrence matrices (GLCMs), and the image texture features may include Haralick and/or Tamura image texture features. To train the classifier, reference image texture feature values are computed for at least the set of image texture features from images of the anatomical feature of interest in reference subjects. The reference image texture feature values are divided into different population groups representing different values of the molecular feature of interest, and the classifier is trained to distinguish between the different population groups based on the reference image texture feature values.
    • 根据受试者感兴趣的解剖学特征的图像,针对一组图像纹理特征计算图像纹理特征值,并且基于所计算的图像纹理特征值将对象分类为感兴趣的分子特征。 可以从一个或多个灰度共生矩阵(GLCM)计算图像纹理特征值,并且图像纹理特征可以包括Haralick和/或Tamura图像纹理特征。 为了训练分类器,参考图像纹理特征值是从参考对象中感兴趣的解剖特征的图像中计算至少一组图像纹理特征。 将参考图像纹理特征值分成表示不同分子特征值的不同群体组,并且根据参考图像纹理特征值对分类器进行训练以区分不同群体组。
    • 9. 发明申请
    • TEXTURE ANALYSIS MAP FOR IMAGE DATA
    • 图像数据的纹理分析图
    • WO2016067254A1
    • 2016-05-06
    • PCT/IB2015/058382
    • 2015-10-30
    • KONINKLIJKE PHILIPS N.V.
    • CARMI, Raz
    • G06T7/40
    • G06T7/45G06K9/4642G06T11/008G06T2207/10081
    • A method includes obtaining at least a first energy dependent spectral image volume and a second different energy dependent spectral image volume from reconstructed spectral image data. The method further includes generating a multi-dimensional spectral diagram that maps, for each voxel, a value of the first energy dependent spectral image volume to a corresponding value of the second energy dependent spectral image volume. The method further includes generating a set of spectral texture analysis weights from the multi-dimensional spectral diagram. The method further includes retrieving a set of texture analysis functions, which are generated as a function of voxel intensity and voxel gradient value from a co-occurrence matrix histogram. The method further includes generating a texture analysis map through a texture analysis of the reconstructed spectral image data with the set of texture analysis functions and the set of spectral texture analysis weights and visually presenting the texture analysis map.
    • 一种方法包括从重构的光谱图像数据获得至少第一能量依赖光谱图像体积和第二不同的能量相关光谱图像体积。 该方法还包括生成多维光谱图,其为每个体素将第一能量相关光谱图像体积的值映射到第二能量依赖光谱图像体积的对应值。 该方法还包括从多维谱图生成一组光谱纹理分析权重。 该方法还包括从共现矩阵直方图中检索作为体素强度和体素梯度值的函数产生的一组纹理分析函数。 该方法还包括通过纹理分析功能和一组光谱纹理分析权重的组合分析重建光谱图像数据的纹理分析,并可视化呈现纹理分析图,生成纹理分析图。