会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明申请
    • DEVICE AND METHOD FOR DENOISING A VECTOR-VALUED IMAGE
    • 用于消除向量值图像的装置和方法
    • WO2017190968A1
    • 2017-11-09
    • PCT/EP2017/059582
    • 2017-04-24
    • KONINKLIJKE PHILIPS N.V.
    • BERGNER, FrankBRENDEL, Bernhard JohannesKOEHLER, Thomas
    • G06T5/00G06T11/00
    • G06T5/002G06F17/16G06T11/008G06T2207/10072G06T2207/10081G06T2211/408G06T2211/424
    • The present invention relates to a device (100) for denoising a vector-valued image, the device (100) comprising: a generator (10), which is configured to generate an initial loss function (L_I) comprising at least one initial covariance matrix (ICM) defining a model of correlated noise for each pixel of the vector-valued image; a processor (20), which is configured to provide a final loss function (L_F) comprising a set of at least one final covariance matrix (FCM) based on the initial loss function by modifying at least one submatrix and/or at least one matrix element of the initial covariance matrix (ICM); and a noise-suppressor (30), which is configured to denoise the vector-valued image using the final loss function (L_F) comprising the set of the at least one final covariance matrix (FCM).
    • 本发明涉及一种用于对矢量值图像进行去噪的设备(100),该设备(100)包括:发生器(10),其被配置为生成初始损失函数(L_I )包括至少一个初始协方差矩阵(ICM),所述初始协方差矩阵定义所述矢量值图像的每个像素的相关噪声模型; 处理器(20),其被配置为通过修改至少一个子矩阵和/或至少一个矩阵来基于初始损失函数提供包括一组至少一个最终协方差矩阵(FCM)的最终损失函数(L_F) 初始协方差矩阵(ICM)的元素; 和噪声抑制器(30),其被配置为使用包括所述至少一个最终协方差矩阵(FCM)的集合的最终损失函数(L_F)来去除矢量值图像。
    • 7. 发明申请
    • TOMOGRAPHY APPARATUS AND METHOD FOR RECONSTRUCTING TOMOGRAPHY IMAGE THEREOF
    • 用于重建其层析图像的层析摄影装置和方法
    • WO2017126772A1
    • 2017-07-27
    • PCT/KR2016/010876
    • 2016-09-29
    • SAMSUNG ELECTRONICS CO., LTD.
    • CHOI, Ki-hwanHAN, Seok-minYOO, Sang-wookYI, Jong-hyon
    • A61B6/00A61B6/03
    • G06T11/003A61B6/032A61B6/5205A61B2576/00G06T7/0012G06T2207/10081
    • A tomography method for generating a computed tomography (CT) image, including generating a first tomography image based on first raw data corresponding to a received X-ray comprising acquired photons; determining second raw data by generating a second tomography image having an increased resolution in comparison with the first tomography image and performing forward projection on the second tomography image; determining third raw data based on a first parameter, the first raw data, and the second raw data; and generating a third tomography image based on the third raw data, wherein the determining of the third raw data may be based on information about a distribution of the acquired photons, the information being included in at least one from among the first raw data and the second raw data.
    • 用于生成计算机断层摄影(CT)图像的断层摄影方法,包括:基于与接收到的包括获取的光子的X射线对应的第一原始数据生成第一断层摄影图像; 通过生成与第一断层图像相比具有增加的分辨率的第二断层图像并且对第二断层图像执行前向投影来确定第二原始数据; 基于第一参数,第一原始数据和第二原始数据确定第三原始数据; 以及基于所述第三原始数据生成第三断层图像,其中所述第三原始数据的确定可以基于关于所述获取的光子的分布的信息,所述信息被包括在所述第一原始数据和所述第二原始数据中的至少一个中, 第二个原始数据。
    • 9. 发明申请
    • METHODS AND SYSTEMS FOR STOCHASTIC GROWTH ASSESSMENT
    • 用于随机生长评估的方法和系统
    • WO2017091507A1
    • 2017-06-01
    • PCT/US2016/063111
    • 2016-11-21
    • FOVIA, INC.
    • KREEGER, Kevin
    • G06T15/00G06T7/00G06T17/00
    • G06T7/0012G06T7/0016G06T7/254G06T7/277G06T2207/10028G06T2207/10081G06T2207/20076G06T2207/30064
    • Methods and systems related to variation assessment of a first 3D object are provided. In some embodiments, a computer system obtains a first dataset and a second dataset. The first dataset represents data associated with a first evaluation of the first 3D object and the second dataset represents data associated with a second evaluation of the first 3D object. The computer system determines a first metric based on the first dataset and a second metric based on the second dataset. The first and second metrics represent distributions of probabilities with respect to values associated with the characteristic of the first 3D object at the first and second evaluations, respectively. The computer system further provides, based on the first metric and the second metric, an assessment of the first 3D object variation between the first evaluation and the second evaluation.
    • 提供了与第一3D对象的变化评估有关的方法和系统。 在一些实施例中,计算机系统获得第一数据集和第二数据集。 第一数据集表示与第一3D对象的第一评估相关联的数据,并且第二数据集表示与第一3D对象的第二评估相关联的数据。 计算机系统基于第一数据集确定第一度量,并基于第二数据集确定第二度量。 第一和第二度量分别表示关于与在第一和第二评估处的第一3D对象的特性相关联的值的概率的分布。 计算机系统还基于第一度量和第二度量提供第一评估和第二评估之间的第一3D对象变化的评估。