会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • UNMANNED AIR VEHICLE (UAV), CONTROL SYSTEM AND METHOD
    • 无人机(UAV),控制系统和方法
    • WO2010100436A3
    • 2010-12-02
    • PCT/GB2010000399
    • 2010-03-05
    • CRANFIELD AEROSPACE LTDTHOMASSON PETER GEOFFREYJONES ROBERT IDRISPOLL DAVID IAN ALISTAIR
    • THOMASSON PETER GEOFFREYJONES ROBERT IDRISPOLL DAVID IAN ALISTAIR
    • B64C39/02
    • B64C39/024B64C2201/028B64C2201/127B64C2201/141B64C2201/146G05D1/0094G05D1/0825
    • A gust-insensitive unmanned air vehicle (UAV) for imaging the ground, the UAV comprising: an airframe which is substantially neutrally stable and comprises a fuselage and at least three wings which include control surfaces, wherein the wings are arranged in symmetrical relation about the fuselage and confer the UAV with a roll stability about the longitudinal axis of the fuselage for any roll angle, thereby allowing the roll angle of the UAV to be set to any required angle independent of the heading and pitch angle of the UAV; a propulsion device for propelling the UAV in flight; an image sensor for imaging the ground, wherein the image sensor has a footprint, the position of which is determined by the roll angle of the UAV; and a flight control system for controlling the in-flight operation of the UAV, wherein the flight control system includes flight control sensors and is operative to render the UAV gust insensitive in response to inputs from the flight control sensors, whereby the UAV exhibits substantially only linear displacements in response to wind gusts, and control the roll angle of the UAV to determine the position of the sensor footprint.
    • 一种用于对地面进行成像的对阵风不敏感的无人驾驶飞行器(UAV),所述无人飞行器包括:基本上中性稳定的机身,所述机身包括机身和至少三个包括控制表面的机翼,其中所述机翼关于 并且为任何侧倾角度赋予无人机关于机身纵向轴线的侧倾稳定性,由此允许无人飞行器的侧倾角度被设定为与无人飞行器的航向和俯仰角无关的任何所需角度; 推进飞行中的无人飞行器的推进装置; 图像传感器,用于对地面进行成像,其中图像传感器具有覆盖区,覆盖区的位置由无人飞行器的侧倾角确定; 以及用于控制所述UAV的飞行中操作的飞行控制系统,其中所述飞行控制系统包括飞行控制传感器并且可操作以响应于来自所述飞行控制传感器的输入而使所述UAV阵风不敏感,由此所述UAV实质上仅展现 响应风阵的线性位移,并控制UAV的侧倾角以确定传感器覆盖区的位置。
    • 3. 发明申请
    • SYSTEMS AND METHODS FOR ESTIMATING POSITION, ATTITUDE, AND/OR HEADING OF A VEHICLE
    • 用于估计车辆的位置,姿态和/或起飞的系统和方法
    • WO2005119387A3
    • 2006-06-08
    • PCT/US2005019435
    • 2005-06-02
    • ATHENA TECHNOLOGIES INCVOS DAVID WILLIAMGAVRILETS VLADISLAV
    • VOS DAVID WILLIAMGAVRILETS VLADISLAV
    • G01C21/00G05D1/08
    • G05D1/0825G01C21/165
    • A system for estimating at least one of position, attitude, and heading of a vehicle is disclosed. The system includes at least three gyroscopes configured to output a signal indicative of inertial angular rates around three mutually orthogonal axes of the vehicle and at least three accelerometers configured to output a signal indicative of accelerations along three mutually orthogonal axes of the vehicle. The system further includes a triaxial magnetometer configured to output a signal indicative of a projection of ambient magnetic field on three mutually orthogonal axes of the vehicle. The system also includes a sensor configured to output a signal indicative of vehicle altitude and a differential pressure sensor configured to output a signal indicative of airspeed of the vehicle. The system further includes a device configured to receive the signals and estimate at least of one of position, attitude, and heading of the vehicle.
    • 公开了一种用于估计车辆的位置,姿态和航向中的至少一个的系统。 该系统包括至少三个陀螺仪,其被配置为输出指示围绕车辆的三个相互正交的轴线的惯性角速度的信号,以及配置为输出指示沿着车辆的三个相互正交的轴线的加速度的信号的至少三个加速度计。 该系统还包括三轴磁力计,其被配置为输出指示车辆的三个相互正交的轴上的环境磁场的投影的信号。 该系统还包括被配置为输出指示车辆高度的信号的传感器和配置成输出指示车辆空速的信号的差压传感器。 该系统还包括被配置为接收信号并且估计车辆的位置,姿态和航向中的至少一个的装置。
    • 5. 发明申请
    • VERFAHREN ZUM BEREITSTELLEN EINES PILOTWARN-SIGNALS FÜR EINEN PILOTEN EINES FLUGZEUGES, COMPUTERPROGRAMMPRODUKT UND WARNVORRICHTUNG
    • 一种用于提供飞行员报警信号,用于飞机的飞行员,计算机程序产品和报警装置
    • WO2011009918A1
    • 2011-01-27
    • PCT/EP2010/060645
    • 2010-07-22
    • AIRBUS OPERATIONS GMBHGIESSELER, Hans-Gerd
    • GIESSELER, Hans-Gerd
    • G05D1/08
    • G05D1/0825B64C13/10B64D45/00G05D1/0841
    • Das Verfahren hat folgende Schritte: Bereitstellen eines ersten Signals zur Angabe eines Pedal-Winkels eines vom Piloten betätigbaren Pedals; Bereitstellen eines zweiten Signals, welches eine direkte dynamische Abhängigkeit von dem Pedal-Winkel hat; jeweiliges Bilden eines Wertepaares aus dem ersten Signal und zweiten Signal zu einem bestimmten Zeitpunkt; jeweiliges Bestimmen einer Winkeländerung der Wertepaare und einer Winkeländerung des Inkrements der Wertepaare zu zwei aufeinanderfolgenden Zeitpunkten; und Generieren des Pilotwarn-Signals bei festgestellter Betätigung des Pedals und festgestellter angeregter Taumelschwingung des Flugzeuges und falls die bestimmte Winkeländerung der Wertepaare größer als ein erster Schwellwert ist oder die bestimmte Winkeländerung des Inkrements der Wertepaare größer als ein zweiter Schwellwert ist. Ferner ist ein Computerprogrammprodukt sowie eine Warnvorrichtung vorgesehen.
    • 该方法具有以下步骤:提供指示由飞行员踏板致动的踏板的角度的第一信号; 提供具有踏板角度的直接动态依赖的第二信号; 分别形成一对从在给定时间的第一信号和第二信号值; 确定所述成对的数值,并在两个时间连续点的值对增量的角度变化的相应的角度变化; 并且在踏板的检测到的操作生成所述导频报警信号,并检测所述飞行器的兴奋翻滚,如果该值对所确定的角度变化大于第一阈值或在值对增量所确定的角度变化较大大于第二阈值。 此外,计算机程序产品和一种警告装置。
    • 7. 发明申请
    • 慣性計測装置を用いた姿勢推定装置及び方法並びにプログラム
    • 使用惯性测量设备和程序估算姿态的装置和方法
    • WO2002088633A1
    • 2002-11-07
    • PCT/JP2002/004103
    • 2002-04-24
    • 学校法人 日本大学志甫 徹石井 亮笹島 雄一郎
    • 志甫 徹石井 亮笹島 雄一郎
    • G01C19/00
    • G05D1/0825B64G1/288B64G1/36B64G2001/245G01C21/16
    • The attitude estimating apparatus comprising a Kalman filter (3) receiving a state quantity omega (t) from an inertial measurement equipment (1), inputting it into predetermined system equation and observation equation and performing time update and observation update processing thereof, a processing section (4) for generating an estimate of the time derivative of a correction Rodrigues parameter alpha (t) based on the output from the Kalman filter, an integrating section (5) for generating an estimate of the correction Rodrigues parameter based on the output from the processing section, a system propagation matrix generating section (6) for updating an observation sensitivity matrix based on a previously provided initial value and an output from the integrating section and supplying an updated output to the Kalman filter, a conversion matrix generating section (7) for generating a coordinate conversion matrix R based on an output from the integrating section, and a section (8) for estimating the attitude based on an output from the conversion matrix generating section.
    • 姿态估计装置包括从惯性测量设备(1)接收状态量ω(t)的卡尔曼滤波器(3),将其输入到预定的系统方程和观测方程中,并执行时间更新和观察更新处理,处理部分 (4),用于基于来自卡尔曼滤波器的输出生成校正罗德里格斯参数α(t)的时间导数的估计;积分部分(5),用于基于来自所述卡尔曼滤波器的输出生成校正罗德里格斯参数的估计 转换矩阵生成部(6),用于根据先前提供的初始值更新观测灵敏度矩阵和来自积分部分的输出,并将更新的输出提供给卡尔曼滤波器;转换矩阵生成部分, 用于基于积分部分的输出产生坐标转换矩阵R,以及用于估计的部分(8) 基于来自转换矩阵生成部的输出来逼真姿态。
    • 9. 发明申请
    • UNMANNED AIR VEHICLE (UAV), CONTROL SYSTEM AND METHOD
    • 无人机(UAV),控制系统和方法
    • WO2010100436A2
    • 2010-09-10
    • PCT/GB2010/000399
    • 2010-03-05
    • CRANFIELD AEROSPACE LTDTHOMASSON, Peter, GeoffreyJONES, Robert, IdrisPOLL, David, Ian, Alistair
    • THOMASSON, Peter, GeoffreyJONES, Robert, IdrisPOLL, David, Ian, Alistair
    • B64C13/16
    • B64C39/024B64C2201/028B64C2201/127B64C2201/141B64C2201/146G05D1/0094G05D1/0825
    • A gust-insensitive unmanned air vehicle (UAV) for imaging the ground, the UAV comprising: an airframe which is substantially neutrally stable and comprises a fuselage and at least three wings which include control surfaces, wherein the wings are arranged in symmetrical relation about the fuselage and confer the UAV with a roll stability about the longitudinal axis of the fuselage for any roll angle, thereby allowing the roll angle of the UAV to be set to any required angle independent of the heading and pitch angle of the UAV; a propulsion device for propelling the UAV in flight; an image sensor for imaging the ground, wherein the image sensor has a footprint, the position of which is determined by the roll angle of the UAV; and a flight control system for controlling the in-flight operation of the UAV, wherein the flight control system includes flight control sensors and is operative to render the UAV gust insensitive in response to inputs from the flight control sensors, whereby the UAV exhibits substantially only linear displacements in response to wind gusts, and control the roll angle of the UAV to determine the position of the sensor footprint.
    • 一种用于对地面进行成像的阵风不敏感的无人驾驶飞行器(UAV),所述无人机包括:基本中立稳定的机身,包括机身和至少三个包括控制表面的机翼,其中所述机翼围绕 机身并赋予无人机以任何滚动角度的关于机身的纵向轴线的滚动稳定性,从而允许无人机的侧倾角度被设定为独立于无人机的航向和俯仰角度的任何所需角度; 用于在飞行中推动无人机的推进装置; 用于对地面进行成像的图像传感器,其中图像传感器具有由UAV的滚动角确定的位置; 以及用于控制无人机的飞行操作的飞行控制系统,其中所述飞行控制系统包括飞行控制传感器并且可操作以响应于来自飞行控制传感器的输入而使UAV阵风不敏感,由此UAV仅显示出 响应于阵风的线性位移,并且控制无人机的侧倾角以确定传感器足迹的位置。
    • 10. 发明申请
    • SYSTEM AND METHOD FOR CONTROLLING MODEL AIRCRAFT
    • 用于控制模型飞机的系统和方法
    • WO2004108524A3
    • 2005-02-10
    • PCT/US2004012812
    • 2004-04-23
    • NEURAL ROBOTICS INC
    • FOUCHE MICHAEL J
    • B64C13/16B64C39/02G05B13/02G05D1/08G05D1/00
    • G05B13/027B64C13/16B64C39/024B64C2201/024B64C2201/146G05D1/0825
    • In one embodiment, a method for controlling an aircraft (10) comprises providing an attitude error (214) as a first input into a neural controller (202) and an attitude rate (216) as a second input into the neural controller (202). The attitude error (214) is calculated from a commanded attitude (218) and a current measured attitude (220), and the attitude rate (216) is derived from the current measured attitude (220). The method also comprises processing the first input (214) and the second input (216) to generate a commanded servo actuator rate (222) as an output of the neural controller (202). The method further comprises generating a commanded actuator position (226) from the commanded servo actuator rate (222) and a current servo position (224), and inputting the commanded actuator position (226) to a servo motor (204) configured to drive an attitude actuator (206) to the commanded actuator position (226). The neural controller (202) is developed from a neural network, wherein the neural network is designed without using conventional control laws, and the neural network is trained to eliminate the attitude error (214).
    • 在一个实施例中,一种用于控制飞机(10)的方法包括提供作为神经控制器(202)的第一输入的姿态误差(214)和作为神经控制器(202)的第二输入的姿态速率(216) 。 根据指令姿态(218)和当前测量姿态(220)计算姿态误差(214),并且姿态速率(216)从当前测量姿态(220)导出。 该方法还包括处理第一输入(214)和第二输入(216)以产生作为神经控制器(202)的输出的命令伺服执行器速率(222)。 该方法还包括根据所命令的伺服执行器速率(222)和当前伺服位置(224)产生指令的致动器位置(226),并将命令的致动器位置(226)输入到伺服电动机(204) 姿态致动器(206)到所命令的致动器位置(226)。 神经控制器(202)从神经网络开发,其中神经网络被设计成不使用常规的控制规律,训练神经网络以消除姿态误差(214)。