会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • DETECTION OF OUTLIER RANGE MEASUREMENTS USING SPATIAL DISPLACEMENT DATA
    • 用空间位移数据检测出口范围的测量
    • WO2018052738A1
    • 2018-03-22
    • PCT/US2017/049842
    • 2017-09-01
    • QUALCOMM INCORPORATED
    • NIESEN, UrsGARIN, Lionel JacquesJOSE, Jubin
    • G01S19/20G01S19/22
    • G01S19/22G01S19/26G01S19/29
    • The disclosure generally relates to position sensors, and more particularly to outlier detection using spatial displacement data. An apparatus for use in position sensing may include a displacement sensor, a positioning signal receiver having a receiver clock, a memory, and a processor coupled to the displacement sensor, the positioning signal receiver, and the memory. The processor and memory may be configured to calculate a change in a receiver clock bias of the receiver clock based on range measurements and spatial-based displacement data, propagate a first range measurement based, at least in part, on the spatial-based displacement data and the change in the receiver clock bias, and determine an outlier range measurement based, at least in part, on the propagated first range measurement.
    • 本公开总体上涉及位置传感器,并且更具体地涉及使用空间位移数据的异常值检测。 用于位置感测的装置可以包括位移传感器,具有接收器时钟的定位信号接收器,存储器以及耦合到位移传感器,定位信号接收器和存储器的处理器。 处理器和存储器可以被配置为基于距离测量结果和基于空间的位移数据来计算接收器时钟的接收器时钟偏差的变化,至少部分地基于基于空间的位移数据来传播第一距离测量 和接收机时钟偏差的变化,并且至少部分地基于传播的第一距离测量来确定异常值范围测量。
    • 4. 发明申请
    • IMPROVED NAVIGATION FOR A VEHICLE BY IMPLEMENTING TWO OPERATING MODES
    • 通过实施两种操作模式改进了车辆的导航
    • WO2017092801A1
    • 2017-06-08
    • PCT/EP2015/078355
    • 2015-12-02
    • HUSQVARNA AB
    • HOLMSTRÖM, JonathanREIGO, Peter
    • G01S19/48G01S19/26G01S19/14
    • G01S19/48G01S19/14G01S19/26
    • A robotic lawnmower (100) for movable operation within a work area (205) has a satellite navigation device (190), a landmark scanner (193) and a controller (110). The controller causes the robotic lawnmower (100) to movably operate within the work area (205) in a first operating mode, the first operating mode being based on positions determined from satellite signals received by the satellite navigation device (190). The controller determines that a position cannot be reliably determined based on satellite signals received by the satellite navigation device (190), and in response thereto causes the robotic lawnmower (100) to movably operate within the work area (205) in a second operating mode. In the second operating mode, the controller receives scanning information from said landmark scanner (193) and identifies at least one landmark based on the received scanning information and determines a landmark-based position estimate. The controller defines a search space using the landmark-based position estimate, and the satellite navigation device (190) is reconstructed based on the defined search space. Once the satellite navigation device (190) has been reconstructed, the controller causes the robotic lawnmower (100) to again operate in the first operating mode.
    • 用于工作区域(205)内的可移动操作的机器人割草机(100)具有卫星导航装置(190),地标扫描器(193)和控制器(110)。 控制器使机器人割草机(100)在第一操作模式中在工作区域(205)内可移动地操作,第一操作模式基于由卫星导航装置(190)接收的卫星信号确定的位置。 控制器确定基于由卫星导航装置(190)接收的卫星信号不能可靠地确定位置,并且响应于此,机器人割草机(100)在第二操作模式(205)中在工作区域(205)内可移动地操作 。 在第二操作模式中,控制器从所述地标扫描仪(193)接收扫描信息,并且基于所接收的扫描信息来识别至少一个地标并且确定基于地标的位置估计。 控制器使用基于地标的位置估计来定义搜索空间,并且基于定义的搜索空间来重建卫星导航装置(190)。 一旦卫星导航装置(190)已被重建,控制器使机器人割草机(100)再次在第一操作模式下操作。
    • 5. 发明申请
    • GNSS RECEIVER DESIGN TESTING
    • GNSS接收机设计测试
    • WO2010102681A1
    • 2010-09-16
    • PCT/EP2009/062380
    • 2009-09-24
    • NORDNAV TECHNOLOGIES ABMITELMAN, AlexanderHAKANSON, RobinKARLSSON, DavidLINDSTRÖM, FredrikRENSTRÖM, ThomasSTAHLBERG, ChristianTIDD, James Burgess
    • MITELMAN, AlexanderHAKANSON, RobinKARLSSON, DavidLINDSTRÖM, FredrikRENSTRÖM, ThomasSTAHLBERG, ChristianTIDD, James Burgess
    • H04B17/00G01S1/00
    • G01S19/23G01S19/13G01S19/26H04B17/27
    • A GNSS receiver design is tested, which design includes software (135) for generating position/time related data (DPT) based on raw digital data (dRAw) when the software (135) is executed in a processing unit (130) of the receiver. GNSS signals (SRF) are received via a radio frequency input device (105) while moving the radio frequency input device (105) along a route trajectory. The received GNSS signals (SRF) are fed to a radio-frequency front end (110) of a representative example of a receiver unit built according to the design to be tested. The radio-frequency front end (110) produces raw digital data (dRAw) representing the received GNSS signals (SRF), and the raw digital data (dRAw) are stored in a primary data storage (210) as a source file (Fsc). The source file (Fsc) is read from the primary data storage (210), and the source file (Fsc) is processed by means of the software (135) to generate at least one set of position/time related data (DPT). Each set of position/time related data (DPT) is stored to a respective result file (Fres), and the result file(s) (Fres) is(are) evaluated against reference data (Dref) to determine the perfor mance of the design.
    • 测试GNSS接收机设计,该设计包括当在接收机的处理单元(130)中执行软件(135)时,基于原始数字数据(dRAw)生成位置/时间相关数据(DPT)的软件(135) 。 在沿着路线轨迹移动射频输入装置(105)的同时,经由射频输入装置(105)接收GNSS信号(SRF)。 接收的GNSS信号(SRF)被馈送到根据待测试设计构建的接收机单元的代表性示例的射频前端(110)。 射频前端(110)产生表示接收到的GNSS信号(SRF)的原始数字数据(dRAw),原始数字数据(dRAw)作为源文件(Fsc)存储在主数据存储器(210)中, 。 从主数据存储器(210)读取源文件(Fsc),并通过软件(135)处理源文件(Fsc)以生成至少一组位置/时间相关数据(DPT)。 将每组位置/时间相关数据(DPT)存储到相应的结果文件(Fres)中,并且根据参考数据(Dref)对结果文件(Fres)进行评估,以确定 设计。
    • 8. 发明申请
    • INERTIAL GPS NAVIGATION SYSTEM WITH MODIFIED KALMAN FILTER
    • 具有改进的卡尔曼滤波器的惯性GPS导航系统
    • WO2005071431A1
    • 2005-08-04
    • PCT/CA2004/000072
    • 2004-01-23
    • NOVATEL INC.FORD, Thomas, JohnHAMILTON, JasonBOBYE, Michael
    • FORD, Thomas, JohnHAMILTON, JasonBOBYE, Michael
    • G01S5/14
    • G01S19/47G01C21/165G01S19/26G01S19/44
    • An inertial ("INS")/GPS receiver includes an INS sub-system which incorporates, into a modified Kalman filter, GPS observables and/or other observables that span previous and current times. The INS filter utilizes the observables to update position information relating to both the current and the previous times, and to propagate the current position, velocity and attitude related information. The GPS observable may be delta phase measurements, and the other observables may be, for example, wheel pick-offs (or counts of wheel revolutions) that are used to calculate along track differences, and so forth. The inclusion of the measurements in the filter together with the current and the previous position related information essentially eliminates the effect of system dynamics from the system model. A position difference can thus be formed that is directly observable by the phase difference or along track difference measured between the previous and current time epochs. Further, the delta phase measurements can be incorporated in the INS filter without having to maintain GPS carrier ambiguity states. The INS sub-system and the GPS sub-system share GPS and INS position and covariance information. The receiver time tags the INS and any other non-GPS measurement data with GPS time, and then uses the INS and GPS filters to produce INS and GPS position information that is synchronized in time. The GPS/INS receiver utilizes GPS position and associated covariance information and the GPS and/or other observables in the updating of the INS filter. The INS filter, in turn, provides updated system error information that is used to propagate inertial current position, velocity and attitude information. Further, the receiver utilizes the inertial position, velocity and covariance information in the GPS filters to speed up GPS satellite signal re-acquisition and associated ambiguity resolution operations.
    • 惯性(“INS”)/ GPS接收机包括INS子系统,其将改进的卡尔曼滤波器并入到可以观察的GPS观测器和/或其他可观测量,其可以跨越先前的和当前的时间。 INS过滤器利用可观测值来更新与当前和之前的时间有关的位置信息,并且传播当前位置,速度和态度相关信息。 GPS可观测可以是增量相位测量,而其它可观测量可以是例如用于沿着轨迹差异计算的轮子拾取(或车轮转数)),等等。 将测量结果与当前和先前的位置相关的信息一起纳入过滤器,基本上消除了系统模型的系统动力学的影响。 因此可以形成通过在先前和当前时间段之间测量的相位差或跟踪差可直接观察到的位置差异。 此外,Δ相位测量可以并入INS滤波器,而不必维护GPS载波模糊状态。 INS子系统和GPS子系统共享GPS和INS位置和协方差信息。 接收机时间使用GPS时间标记INS和任何其他非GPS测量数据,然后使用INS和GPS滤波器来产生时间同步的INS和GPS位置信息。 GPS / INS接收机在更新INS滤波器时使用GPS位置和相关协方差信息以及GPS和/或其他可观察值。 INS过滤器又提供用于传播惯性当前位置,速度和姿态信息的更新的系统错误信息。 此外,接收机利用GPS滤波器中的惯性位置,速度和协方差信息来加速GPS卫星信号重新获取和相关的模糊度解析操作。
    • 10. 发明申请
    • POSITIONING APPARATUS AND METHOD
    • 定位装置和方法
    • WO02046789A1
    • 2002-06-13
    • PCT/GB2001/005430
    • 2001-12-07
    • G01S1/00G01S5/00G01S5/14G01S19/09G01S19/26G01S19/29G01S19/42H04B1/707H04L27/00
    • H04B1/7085G01S19/09G01S19/26G01S19/29G01S19/42H04L27/0014H04L2027/0065
    • Positioning apparatus (10) for use in a moving vehicle includes circuitry arranged to process signals received from GPS satellites, and to provide signals in response thereto from which the position of the apparatus (10) can be calculated at a remote station (Figure 2). The apparatus (10) provides, for each satellite in view, carrier frequency estimation signals, samples of the carrier signals and code stacking signals to a data transmission device (14), which modulates the signals onto a carrier prior to transmission to the remote station. A carrier loop reconstruction device and location processor in the remote station co-operate to determine the location of the positioning apparatus. A memory device (32) at the remote station may record the signals received from the vehicle over a period of time, for subsequent carrier loop reconstruction and location determination.
    • 用于移动车辆的定位装置(10)包括被布置成处理从GPS卫星接收的信号并且响应于此提供信号的电路,可以从远程站(图2)计算装置(10)的位置, 。 该装置(10)为视频中的每个卫星提供载波频率估计信号,载波信号的样本和代码堆叠信号到数据传输装置(14),其在传输到远程站之前将信号调制到载波上 。 远程站中的载波回路重建设备和位置处理器协作以确定定位设备的位置。 远程站处的存储设备(32)可以在一段时间内记录从车辆接收到的信号,以便后续的载波环重建和位置确定。