会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • 回転機械システム
    • 旋转机系统
    • WO2015125246A1
    • 2015-08-27
    • PCT/JP2014/054001
    • 2014-02-20
    • 三菱重工コンプレッサ株式会社
    • 岸 利行益田 智博
    • F16H57/029
    • F01D25/18F01D13/00F01D15/00F01D25/16F16D3/56F16D2300/06F16H57/029F16H57/0423F16H57/0471
    •  軸線回りに駆動可能な駆動軸(5)を有する第一回転機械(4)と、軸線回りに回転可能な従動軸(3)、及び、従動軸(3)を軸端部側でパッド面(37)によって摺動可能に支持してパッド面(37)に潤滑油が供給される軸受装置(11)を有する第二回転機械(2)と、駆動軸(5)と従動軸(3)とを連結して、駆動軸(5)の回転を従動軸(3)に伝達するカップリング部(6)と、軸受装置(11)とカップリング部(6)との間に設けられて、軸受装置(11)側の空間とカップリング部(6)側の空間を隔てるバッフルプレート(7)と、を備える回転機械システム(1)。
    • 一种旋转机器系统(1),其具有:第一旋转机械(4),具有能够围绕所述轴线行驶的驱动轴(5); 具有能够围绕轴线旋转的从动轴(3)的第二旋转机(2)和轴承装置(11),其在所述轴端处以垫表面(37)可滑动地支撑所述从动轴(3) 其中向所述垫表面(37)供应润滑油; 联接部分(6),其将驱动轴(5)联接到从动轴(3)并将驱动轴(5)的旋转传递到从动轴(3); 以及设置在所述轴承装置(11)和所述联接部(6)之间的挡板(7),用于将所述轴承装置(11)的空间与所述联接部(6)侧的空间分离 。
    • 5. 发明申请
    • PERFORMANCE ENHANCED GAS TURBINE POWERPLANTS
    • 性能增强的气体涡轮发电机
    • WO1995011375A2
    • 1995-04-27
    • PCT/US1994011830
    • 1994-10-18
    • STATE OF CALIFORNIA ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSION
    • STATE OF CALIFORNIA ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSIONJANES, Clarence, W.
    • F02C07/18
    • F01D13/00F01D1/00F01D1/023F01K21/047F02C1/06F02C3/28F02C6/003F02C7/143F02C7/18F02C7/185F02C7/224F05D2260/10Y02E20/14Y02E20/16Y02T50/675
    • A gas turbine driven powerplant (10) having one or more compressors (20, 22) for producing a down stream air flow, a compressor heat exchanger (34) positioned down stream of the compressors (20, 22) followed by a side stream flow coolant line (50), a regenerator (58) positioned down stream of the heat exchanger (34) and side stream coolant line (50), a combustor (48) positioned down stream of the regenerator (58), one or more turbines (24, 28) positioned down stream of the combustor (48) and mechanically coupled to the compressors (20, 22), and a power turbine (32) positioned down stream of the turbines (24, 28). Combustible effluent flows through heat exchanger (34) and to combustor (48), and air discharged from the compressors (20, 22) flows through heat exchanger (34) and to coolant line (50) and regenerator (58). Heat is transferred from the compressor discharge air to the combustible effluent, thereby producing cooling air and heating the combustible effluent. Heat exchanger (34) can be a heat exchanger or a methane/steam reformer which produces a hydrogen-rich, low NOx, steam diluted combustible effluent. In alternative embodiments, power output is augmented by injecting cooled compressed air directly into the combustor (48) to increase the mass flow through the turbines (24, 28, 32), and exhaust heat is recuperated with a counter-current flow of combustible and water, or water and air, in a conventional once-through heat recovery unit (118). In further embodiments, a small portion of the cool air is combined with the recuperation water in the heat recovery unit (118) to allow vaporization of the water throughout the initial portion of the heat exchange path and form a two-phased feed of water and air to the combustor (48). Additionally, in all embodiments a portion of the cooled compressed air can be processed by a compressor/expander for providing coolant to the turbines, compressors, and auxiliary equipment.
    • 一种具有一个或多个用于产生下游气流的压缩机(20,22)的燃气轮机驱动动力装置(10),位于压缩机(20,22)下游的压缩机热交换器(34),随后是侧流 冷却剂管线(50),位于热交换器(34)下游的再生器(58)和侧流冷却剂管线(50),位于再生器(58)下游的燃烧器(48),一个或多个涡轮机 位于燃烧器(48)下游并机械地联接到压缩机(20,22)的动力涡轮机(32,28),以及定位在涡轮机(24,28)下游的动力涡轮机(32)。 可燃流出物流过热交换器(34)和燃烧器(48),并且从压缩机(20,22)排出的空气流过热交换器(34)和冷却剂管线(50)和再生器(58)。 热量从压缩机排放空气传递到可燃性流出物,从而产生冷却空气并加热可燃性流出物。 热交换器(34)可以是热交换器或甲烷/蒸汽重整器,其产生富含氢的低NOx,蒸汽稀释的可燃性流出物。 在替代实施例中,通过将冷却的压缩空气直接喷射到燃烧器(48)中以增加通过涡轮机(24,28,32)的质量流量来增加功率输出,并且排气热量通过可逆的逆流和 水或水和空气,在常规的直通热回收单元(118)中。 在另外的实施例中,一小部分冷空气与热回收单元(118)中的回收水相结合,以允许水在热交换路径的整个初始部分蒸发并形成两相供水和 空气到燃烧器(48)。 此外,在所有实施例中,冷却的压缩空气的一部分可以由压缩机/膨胀机来处理,以向涡轮机,压缩机和辅助设备提供冷却剂。
    • 8. 发明申请
    • HYBRID TURBO TRANSMISSION
    • 混合涡轮传动
    • WO2010056376A1
    • 2010-05-20
    • PCT/US2009/032118
    • 2009-01-27
    • REZ, Mustafa
    • REZ, Mustafa
    • F02C7/36
    • B60K6/12B60K3/04B60K2016/006F01B9/06F01D1/02F01D13/00F02B33/32F02B75/222F03D9/12F03D9/25F05B2240/941F16H41/22F16H47/10Y02E10/722Y02E10/725Y02E60/16Y02T10/6208Y02T10/90
    • A hybrid turbo transmission for reduced energy consumption is disclosed. A hybrid turbo transmission configured as a multi-purpose unit (MPU). The MPU recovers energy from the cooling system, exhaust system, ram pressure and the breaking system. The MPU unit is an automatic transmission, supercharger, air compressor for other uses, and starter for the engine using a multi-purpose unit that will eliminate the need for a torque converter or clutch, flywheel, catalytic converter, starter and supercharger. The MPU reduces pollution to near zero and reduces the aerodynamic drag coefficient on the vehicle. The MPU uses two or more in-line compressors to transfer power from the power source, such as an internal combustion engine (ICE) to a turbine or multi-stage turbine that acts as an automatic transmission. The hybrid turbo transmission system uses plug-in power as a second source of power.
    • 公开了一种用于降低能耗的混合涡轮变速器。 配置为多用途单元(MPU)的混合涡轮变速器。 MPU从冷却系统,排气系统,压头压力和断路系统中恢复能量。 MPU单元是用于其他用途的自动变速器,增压器,空气压缩机,以及使用多用途单元的发动机起动器,将不需要变矩器或离合器,飞轮,催化转化器,起动器和增压器。 MPU将污染物减少到接近零,并降低了车辆的气动阻力系数。 MPU使用两个或更多个在线压缩机将功率从诸如内燃机(ICE)的电源传送到用作自动变速器的涡轮机或多级涡轮机。 混合涡轮增压传动系统使用插电式作为第二电源。
    • 10. 发明申请
    • PERFORMANCE ENHANCED GAS TURBINE POWERPLANTS
    • 性能增强的气体涡轮发电机
    • WO1995011376A1
    • 1995-04-27
    • PCT/US1994012048
    • 1994-10-18
    • STATE OF CALIFORNIA ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSIONJANES, Clarence, W.
    • STATE OF CALIFORNIA ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSION
    • F02C07/18
    • F02C7/185F01D1/00F01D1/023F01D13/00F01K21/047F02C1/06F02C3/28F02C6/003F02C7/143F02C7/18F02C7/224F05D2260/10Y02E20/14Y02E20/16Y02T50/675
    • An intercooled gas turbine driven powerplant (10) employing a high pressure two-pass heat exchanger (42) down stream of the final stage of compression (22) is disclosed herein. The flow of hot, highly compressed air is cooled in the first pass (54) of the high pressure heat exchanger by a counter current in-tube flow of either water (76) alone, or preferably, of a cold methane/water (76, 78) mixture. The flow of air, thus cooled, is then available, in the second pass (56) of the high pressure heat exchanger (42), to accept exhaust heat or the low grade heat, usually rejected, that is found in the heated fluid from the intercooler (36). The cool air is thus preheated, by the return to the cycle of exhaust heat, intercooler heat, and/or low grade heat from the operation of ancillary equipment prior to its entry into the combustor (48). Additionally, if a methane/water two-phase feed is used to cool the first stage (54) of the heat exchanger (42), the superheated mixture of steam and methane produced by the heat exchanger provides the ingredients to produce a low NOx fuel for the gas turbine combustor (48). Thus the first pass (54) of the high pressure heat exchanger (42) cools the high pressure discharge air flow and simultaneously generates the low NOx fuel gas (or if water alone is used, a quantity of steam for use in any industrial process). The second pass (56) of the high pressure heat exchanger (42) reheats the air flow with the exhaust heat or intercooler heat and simultaneously cools the water (or other heat transfer fluid) and returns that cold fluid to the intercooler (36) or exhaust heat exchanger. In an alternative embodiment, the dual heat exchanger (42) is positioned as an intercooler between stages of compressor (20, 22) instead of downstream of the final stage of compression (22). The first pass (54) of the dual exchanger preheats the fuel (78), which is then routed to a fuel superheater (166) in the exhaust gas stream prior to being injected into the combustor (48). The intercooled air from the final compressor stage (22) is routed to an exhaust heat recuperator (174), where it is heated prior to being injected into the combustor (48).
    • 本文公开了在最终压缩阶段(22)的下游采用高压双程热交换器(42)的中间冷却燃气轮机驱动动力装置(10)。 热的,高度压缩的空气的流动在高压热交换器的第一次通过(54)中通过单独的水(76)或优选冷甲烷/水(76)的逆流管内流动来冷却 ,78)混合物。 然后,在高压热交换器(42)的第二通道(56)中,可以获得如此冷却的空气流,以接受在加热流体中发现的排气热或通常被排除的低级热, 中间冷却器(36)。 因此,通过在辅助设备进入燃烧器(48)之前,辅助设备的操作返回到废热循环,中间冷却器加热和/或低等级的热量,从而预热冷空气。 另外,如果使用甲烷/水两相进料来冷却热交换器(42)的第一级(54),则由热交换器产生的蒸汽和甲烷的过热混合物提供成分以产生低NOx燃料 用于燃气轮机燃烧器(48)。 因此,高压热交换器(42)的第一通道(54)冷却高压排出空气流并同时产生低NOx燃料气体(或者如果使用单独的水,则用于任何工业过程中的蒸汽量) 。 高压热交换器(42)的第二通道(56)利用排热或中间冷却器加热空气流并同时冷却水(或其它传热流体)并将该冷流体返回到中间冷却器(36)或 排气热交换器。 在替代实施例中,双重热交换器(42)被定位为在压缩机(20,22)的级之间的中间冷却器,而不是最终压缩级(22)的下游。 双重交换器的第一道次(54)预热燃料(78),然后将燃料(78)引入废气流中的燃料过热器(166),然后被注入燃烧器(48)。 来自最终压缩机级(22)的中间冷却空气被引导到排气热交换器(174),其中在被注入燃烧器(48)之前被加热。