会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • FUNCTIONALIZED CARBON MEMBRANES
    • 功能性碳膜
    • WO2012094634A3
    • 2012-11-01
    • PCT/US2012020545
    • 2012-01-06
    • DUNE SCIENCES INCMILLER JOHN MTESHIMA JANETHUTCHISON JAMES E
    • MILLER JOHN MTESHIMA JANETHUTCHISON JAMES E
    • G01N1/28B82B1/00H01J37/26
    • B05D1/185B05D3/044G01N1/2813H01J37/20H01J37/26
    • Embodiments provide electron-conducting, electron-transparent substrates that are chemically derivatized (e.g., functional ized) to enhance and facilitate the deposition of nanoscale materials thereupon, including both hard and soft nanoscale materials. In various embodiments, the substrates may include an electron- conducting mesh support, for example, a carbon, copper, nickel, molybdenum, beryllium, gold, silicon, GaAs, or oxide (e.g., SiO2, TiO2, ITO, or AI2O3) support, or a combination thereof, having one or more apertures. In various embodiments, the mesh support may be coated with an electron conducting, electron transparent carbon film membrane that has been chemically derivatized to promote adhesion and/or affinity for various materials, including hard inorganic materials and soft materials, such as polymers and biological molecules.
    • 实施例提供了化学衍生化(例如功能化)的电子传导的电子透明基底,以增强和促进纳米尺度材料的沉积,包括硬和软纳米尺度材料。 在各种实施例中,基底可以包括电子传导网支撑体,例如碳,铜,镍,钼,铍,金,硅,GaAs或氧化物(例如,SiO 2,TiO 2,ITO或Al 2 O 3)载体 ,或其组合,具有一个或多个孔。 在各种实施例中,网状支撑体可以涂覆有电子传导的电子透明碳膜膜,其被化学衍生化以促进对各种材料的粘合和/或亲和力,包括硬无机材料和软材料,例如聚合物和生物分子 。
    • 3. 发明申请
    • ENERGY STORAGE SYSTEMS AND METHODS
    • 能源储存系统和方法
    • WO2011090511A3
    • 2012-02-16
    • PCT/US2010046308
    • 2010-08-23
    • MAXWELL TECHNOLOGIES INCMILLER JOHN M
    • MILLER JOHN M
    • B60L11/18B60L3/00B60L7/02B60L7/10B60L11/00
    • B60L11/005B60L3/0046B60L11/1803B60L11/1861B60L2240/36B60L2250/22Y02T10/7005Y02T10/7022Y02T10/7044Y02T10/705Y10T307/625
    • In an energy storage system that includes a battery and an ultracapacitor, the state of charge (SOC) of the capacitor is the subject of a dynamic set-point. This dynamic set-point control is a function of the load regime to which the storage system is exposed, for example a hybrid automobile or electric automobile. The control may be based in part upon real-time fast Fourier transform analysis of load current, permitting real-time adjustment of control coefficients. In this way, it is possible to minimize the occurrence of the capacitor being fully charged at a time when it would be desired to be able to absorb high current, for example from regenerative braking. Likewise it is possible to minimize the occurrence of the capacitor being nearly discharged at a time when it would be desirable to have boost power available. A result is that even a relatively small ultracapacitor (having perhaps one two- hundredth the energy storage capacity of the battery) can permit greatly reducing waste heat dissipated in the battery, and can reduce otherwise unnecessary cycling of current into and out of the battery. This can extend battery life and battery performance.
    • 在包括电池和超级电容器的能量存储系统中,电容器的充电状态(SOC)是动态设定点的对象。 该动态设定点控制是存储系统暴露的负载状态的函数,例如混合动力汽车或电动汽车。 该控制部分可以部分地基于负载电流的实时快速傅里叶变换分析,允许控制系数的实时调整。 以这种方式,可以最小化在期望能够吸收高电流(例如从再生制动)的时候完全充电的电容器的发生。 同样地,当期望具有可用的升压功率时,可以使电容器几乎放电的发生最小化。 结果是,即使是相对较小的超级电容器(具有电池的能量存储容量的二十分之一)也可以大大减少在电池中消耗的废热,并且可以减少电流进出电池的不必要的循环。 这可以延长电池寿命和电池性能。