会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明申请
    • SEMICONDUCTOR NANOCRYSTALS, METHODS FOR MAKING SAME, COMPOSITIONS, AND PRODUCTS
    • 半导体纳米晶体,其制备方法,组合物和产品
    • WO2013115898A2
    • 2013-08-08
    • PCT/US2012/066154
    • 2012-11-20
    • QD VISION, INC.
    • LIU, WenhaoBREEN, CraigCOE-SULLIVAN, Seth
    • H01L33/16
    • H01L33/06B82Y20/00C09D11/52C09K11/02C09K11/565C09K11/883H01L33/0029H01L33/28H01L33/502Y10S977/774
    • A semiconductor nanocrystal characterized by having a solid state photoluminescence external quantum efficiency at a temperature of 90°C or above that is at least 95% of the solid state photoluminescence external quantum efficiency of the semiconductor nanociystal at 25°C is disclosed. A semiconductor nanociystal having a multiple LO phonon assisted charge thermal escape activation energy of at least 0.5eV is also disclosed. A semiconductor nanociystal capable of emitting light with a maximum peak emission at a wavelength in a range from 590 nm to 650 nm characterized by an absorption spectrum, wherein the absorption ratio of OD at 325 nm to OD at 450 nm is greater than 5.5. A semiconductor nanociystal capable of emitting light with a maximum peak emission at a wavelength in a range from 545 nm to 590 nm characterized by an absorption spectrum, wherein the absorption ratio of OD at 325 nm to OD at 450 nm is greater than 7. A semiconductor nanocrystal capable of emitting light with a maximum peak emission at a wavelength in a range from 495 nm to 545 nm characterized by an absorption spectrum, wherein the absorption ratio of OD at 325 nm to OD at 450 nm is greater than 10. A composition comprising a plurality of semiconductor nanocrystals wherein the solid state photoluminescence efficiency of the composition at a temperature of 90°C or above is at least 95% of the solid state photoluminescence efficiency of the composition 25°C is further disclosed. A method for preparing semiconductor nanocrystals comprises introducing one or more first shell chalcogenide precursors and one or more first shell metal precursors to a reaction mixture including semiconductor nanociystal cores, wherein the first shell chalcogenide precursors are added in an amount greater than the first shell metal precursors by a factor of at least about 2 molar equivalents and reacting the first shell precursors at a first reaction temperature of at least 300°C to form a first shell on the semiconductor nanocrystal cores. Populations, compositions, components and other products including semiconductor nanocrystals of the invention are disclosed. Populations, compositions, components and other products including semiconductor nanocrystals made in accordance with any method of the invention is also disclosed.
    • 公开了一种半导体纳米晶体,其特征在于在90℃以上的温度下具有固态光致发光外部量子效率,其为25℃时半导体纳米晶体的固态光致发光外部量子效率的至少95%。 还公开了具有至少0.5eV的多个LO声子辅助电荷热逸散活化能的半导体纳米晶体。 能够以590nm至650nm范围内的波长发射具有最大峰值发射的光的半导体纳米晶体,其特征在于吸收光谱,其中325nm处的OD与450nm处的OD的吸收比大于5.5。 能够以545nm〜590nm范围内的波长发射具有最大峰值发射的光的半导体纳米晶体,其特征在于吸收光谱,其中325nm处的OD与450nm处的OD的吸收比大于7. 能够以495nm至545nm范围内的波长发射具有最大峰值发射的光的半导体纳米晶体,其特征在于吸收光谱,其中325nm处的OD与450nm处的OD的吸收比大于10。 包括多个半导体纳米晶体,其中组合物在90℃或更高的温度下的固态光致发光效率至少为组合物25℃的固态光致发光效率的95%。 制备半导体纳米晶体的方法包括将一种或多种第一壳硫属元素前体和一种或多种第一壳金属前体引入包含半导体纳米晶核的反应混合物中,其中第一壳硫属元素前体的加入量大于第一壳金属前体 至少约2摩尔当量的因子,并且在至少300℃的第一反应温度下使第一壳前体反应,以在半导体纳米晶核上形成第一壳。 公开了包括本发明的半导体纳米晶体的种群,组合物,组分和其它产品。 还公开了根据本发明的任何方法制备的包含半导体纳米晶体的种群,组合物,组分和其它产品。