会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • SYSTEM AND METHODS FOR ESTIMATION OF BLOOD FLOW CHARACTERISTICS USING REDUCED ORDER MODEL AND MACHINE LEARNING
    • 用降阶模型和机器学习估计血流特征的系统和方法
    • WO2018057529A1
    • 2018-03-29
    • PCT/US2017/052317
    • 2017-09-19
    • HEARTFLOW, INC.
    • SANDERS, Travis, MichaelSANKARAN, SethuramanGRADY, LeoSPAIN, DavidXIAO, NanKIM, JinTAYLOR, Charles
    • G06F19/00A61B5/02G06F19/10G06Q50/22
    • Systems and methods are disclosed for determining blood flow characteristics of a patient. One method includes: receiving, in an electronic storage medium, patient-specific image data of at least a portion of vasculature of the patient having geometric features at one or more points; generating a patient-specific reduced order mode! from the received image data, the patient-specific reduced order model comprising estimates of impedance values and a simplification of the geometric features at the one or more points of the vasculature of the patient; creating a feature vector comprising the estimates of impedance values and geometric features for each of the one or more points of the patient-specific reduced order model; and determining blood flow characteristics at the one or more points of the patient- specific reduced order model using a machine learning algorithm trained to predict blood flow characteristics based on the created feature vectors at the one or more points.
    • 公开了用于确定患者的血流特征的系统和方法。 一种方法包括:在电子存储介质中接收在一个或多个点处具有几何特征的患者的脉管系统的至少一部分的患者特异性图像数据; 生成患者特定的降序模式! 从所接收的图像数据中确定患者特异性降阶模型,其包括患者脉管系统的一个或多个点处的阻抗值的估计和几何特征的简化; 创建特征向量,所述特征向量包括所述患者特异性降阶模型的所述一个或多个点中的每个点的阻抗值和几何特征的估计值; 以及使用机器学习算法确定在患者特异性降阶模型的一个或多个点处的血流特性,所述机器学习算法被训练成基于在一个或多个点处生成的特征矢量来预测血流特性。
    • 3. 发明申请
    • SYSTEMS AND METHODS FOR MODELING NUTRIENT TRANSPORT AND/OR PREDICTING WEIGHT CHANGE
    • 用于模拟营养物输送和/或预测重量变化的系统和方法
    • WO2018031663A1
    • 2018-02-15
    • PCT/US2017/046104
    • 2017-08-09
    • HEARTFLOW, INC.
    • SANKARAN, SethuramanZARINS, ChristopherTAYLOR, Charles, A.GRADY, Leo
    • G06F19/00
    • G09B23/303G06F19/3475G06N5/048G06N20/00G09B9/00G16H50/20G16H50/50
    • Systems and methods are disclosed for identifying and modeling unresolved vessels, and the effects thereof, in image-based patient-specific hemodynamic models. One method includes: receiving a patient-specific anatomical model of at least a portion of a visceral vascular system of the patient; receiving patient-specific information related to the patient's food intake; generating a patient-specific model of blood flow in the patient-specific anatomical model of the portion of the visceral vascular system of the patient; generating a patient-specific model of nutrient transport from at least a part of a gastrointestinal system of the patient to the portion of the visceral vascular system of the patient based on the patient-specific information related to the patient's food intake; and determining an indicia of energy available in the patient based on the patient-specific model of nutrient transport.
    • 公开了用于在基于图像的患者特异性血液动力学模型中识别和建模未分解血管及其效果的系统和方法。 一种方法包括:接收患者的至少一部分内脏血管系统的患者特异性解剖模型; 接收与患者食物摄入有关的患者特异性信息; 在所述患者的所述内脏血管系统的所述部分的所述患者特异性解剖模型中生成患者特异性血流模型; 基于与患者食物摄取有关的患者特异性信息,生成从患者的胃肠系统的至少一部分到患者的内脏血管系统的一部分的营养转运的患者特异性模型; 并且基于患者特定的营养输送模型来确定患者中可用的能量标记。