会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明申请
    • METHODS AND APPARATUS FOR CLEANING SUBSTRATES
    • 用于清洁基材的方法和设备
    • WO2018049671A1
    • 2018-03-22
    • PCT/CN2016/099303
    • 2016-09-19
    • ACM RESEARCH (SHANGHAI) INC.
    • WANG, HuiWANG, XiCHEN, FupingCHEN, FufaWANG, JianZHANG, XiaoyanJIN, YinuoJIA, ZhaoweiWANG, JunLI, Xuejun
    • B08B3/12
    • A method for effectively cleaning vias (20034), trenches (20036) or recessed areas on a substrate (20010) using an ultra/mega sonic device (1003, 3003, 16062, 17072), comprising: applying liquid (1032) into a space between a substrate (20010) and an ultra/mega sonic device (1003, 3003, 16062, 17072); setting an ultra/mega sonic power supply at frequency f 1 and power P 1 to drive said ultra/mega sonic device (1003, 3003, 16062, 17072); after the ratio of total bubbles volume to volume inside vias (20034), trenches (20036) or recessed areas on the substrate (20010) increasing to a first set value, setting said ultra/mega sonic power supply at frequency f 2 and power P 2 to drive said ultra/mega sonic device (1003, 3003, 16062, 17072); after the ratio of total bubbles volume to volume inside the vias (20034), trenches (20036) or recessed areas reducing to a second set value, setting said ultra/mega sonic power supply at frequency f 1 and power P 1 again; repeating above steps till the substrate (20010) being cleaned.
    • 一种使用超大型声波装置(1003,3003,16062,17072)有效地清洁基板(20010)上的通孔(20034),沟槽(20036)或凹陷区域的方法,包括: 将液体(1032)施加到衬底(20010)和超声波/超声波装置(1003,3003,16062,17072)之间的空间中; 在频率f 1和功率P 1下设置超/兆声波电源以驱动所述超声/兆声波设备(1003,3003,16062,17072); 在通孔(20034)内的总气泡体积与体积之比,衬底(20010)上的沟槽(20036)或凹陷区域增加到第一设定值之后,将频率f 2设定为所述超大/超声波电源 和功率P 2以驱动所述超大/超声波设备(1003,3003,16062,17072);以及其中, 在通孔(20034)内的总气泡体积与体积之比,沟槽(20036)或凹陷区域减小到第二设定值之后,以频率f1设置所述超/兆声波电源并且 功率P <1>再次; 重复上述步骤直到清洗基板(20010)。
    • 5. 发明申请
    • SUBSTRATE SUPPORTING APPARATUS
    • 基板支撑装置
    • WO2018006283A1
    • 2018-01-11
    • PCT/CN2016/088754
    • 2016-07-06
    • ACM RESEARCH (SHANGHAI) INC.
    • CHEN, FufaFANG, ZhiyouWU, JunWANG, HuiCHEN, FupingWANG, Wenjun
    • H01L21/67
    • A substrate supporting apparatus (300) for cleaning a back side of a substrate (107) is provided. The substrate supporting apparatus (300) has a hollow shaft (319) and a rotary spindle (303). The rotary spindle (303) is set in the hollow shaft (319) and a spacing is formed between an outer wall of the rotary spindle (303) and an inner wall of the hollow shaft (319). The outer wall of the rotary spindle (303) defines a blocking wall (322) and a recess (324) to prevent particles in the spacing from entering a gas groove (325) which is formed on the hollow shaft (319) and supplies gas to a front side of the substrate (107), avoiding the particles contaminating the front side of the substrate (107), which improves the quality of semiconductor devices.
    • 提供了一种用于清洁衬底(107)的背面的衬底支撑设备(300)。 基板支撑装置(300)具有中空轴(319)和旋转主轴(303)。 旋转主轴(303)安装在中空轴(319)中,并且在旋转主轴(303)的外壁和中空轴(319)的内壁之间形成间隔。 旋转轴(303)的外壁形成一个阻挡壁(322)和一个凹槽(324),以防止间隔中的颗粒进入形成在空心轴(319)上的气体槽(325),并将气体 到衬底(107)的前侧,避免污染衬底(107)正面的颗粒,这改善了半导体器件的质量。
    • 6. 发明申请
    • ROBOT ARM FOR TRANSPORTING SEMICONDUCTOR SUBSTRATES
    • 用于传输半导体衬底的机器人臂
    • WO2017084079A1
    • 2017-05-26
    • PCT/CN2015/095089
    • 2015-11-20
    • ACM RESEARCH (SHANGHAI) INC.
    • WANG, HuiWU, JunFANG, Zhiyou
    • H01L21/677H01L21/683
    • H01L21/68707H01L21/67288H01L21/6838
    • A robot arm (300, 400, 500, 600) for transporting semiconductor substrates (304, 404) comprises a body portion (301, 401, 501, 601), an end portion (302, 402, 502, 602) extending from the body portion (301, 401, 501, 601), a plurality of vacuum cups disposed on the end portion (302, 402, 502, 602), and a plurality of vacuum lines connecting to the plurality of vacuum cups respectively. The distance between any two adjacent vacuum cups satisfies the following condition: a vertical displacement of the semiconductor substrate (304, 404) produced by one of the two adjacent vacuum cups sucking down the semiconductor substrate is greater than a warpage of the semiconductor substrate (304, 404) in the range of the two adjacent vacuum cups, so that once the one of the two adjacent vacuum cups sucks the semiconductor substrate (304, 404), the other vacuum cup of the two adjacent vacuum cups is followed to suck the semiconductor substrate (304, 404).
    • 用于传输半导体衬底(304,404)的机器人臂(300,400,500,600)包括主体部分(301,401,501,601),端部部分(302,402 ,从所述主体部分(301,401,501,601)延伸的多个真空吸盘,布置在所述末端部分(302,402,502,602)上的多个真空吸盘以及连接到所述多个吸盘 的真空杯分别。 任意两个相邻的真空杯之间的距离满足以下条件:由两个相邻的真空杯中的一个抽吸半导体衬底产生的半导体衬底(304,404)的垂直位移大于半导体衬底(304,404)的翘曲 ,404)在两个相邻的真空杯的范围内,从而一旦两个相邻的真空杯中的一个抽吸半导体衬底(304,404),就跟随两个相邻真空杯中的另一个真空杯吸附半导体 衬底(304,404)。
    • 7. 发明申请
    • METHODS AND APPARATUS FOR CLEANING SEMICONDUCTOR WAFERS
    • 用于清洁半导体晶片的方法和设备
    • WO2016183707A1
    • 2016-11-24
    • PCT/CN2015/079015
    • 2015-05-15
    • ACM RESEARCH (SHANGHAI) INC.
    • WANG, HuiCHEN, FufaCHEN, FupingWANG, JianWANG, XiZHANG, XiaoyanJIN, YinuoJIA, ZhaoweiXIE, LiangzhiWANG, JunLI, Xuejun
    • B08B3/12H01L21/67
    • B08B3/12B06B3/02H01L21/67051H01L21/67253
    • A method for cleaning semiconductor substrate without damaging patterned structure on the substrate using ultra/mega sonic device comprising applying liquid into a space between a substrate and an ultra/mega sonic device; setting an ultra/mega sonic power supply at frequency f 1 and power P 1 to drive said ultra/mega sonic device; before bubble cavitation in said liquid damaging patterned structure on the substrate, setting said ultra/mega sonic power supply at frequency f 2 and power P 2 to drive said ultra/mega sonic device; after temperature inside bubble cooling down to a set temperature, setting said ultra/mega sonic power supply at frequency f 1 and power P 1 again; repeating above steps till the substrate being cleaned. Normally, if f 1 =f 2 , then P 2 is equal to zero or much less than P 1 ; if P 1 =P 2 , then f 2 is higher than f 1 ; if the f 1 2 , then, P 2 can be either equal or less than P 1 .
    • 一种使用超/超声波装置在衬底上清洗半导体衬底而不损坏衬底上的图案化结构的方法,包括将液体施加到衬底和超/超声波装置之间的空间中;设置超/超音波装置 在频率f 1和功率P 1下驱动所述超大型声波装置;在衬底上的所述液体损坏图案化结构中产生气泡空化之前,将所述超/ 在频率f 2和功率P 2的超大声波电源以驱动所述超大型声波装置;在气泡内的温度冷却到设定温度后,将所述超声/ 在频率f 1和功率P 1处再次进行超声波电源;重复上述步骤直到清洗基板。 通常,如果f 1 = f 2,则P 2等于零或远小于P 1/2, ;如果P 1 = P 2 ,则f 2高于f 1;如果f 1 2 ,那么P <2>可以等于或小于P 1
    • 9. 发明申请
    • METHOD FOR OPTIMIZING METAL PLANARIZATION PROCESS
    • 优化金属平面化方法的方法
    • WO2016127424A1
    • 2016-08-18
    • PCT/CN2015/073086
    • 2015-02-15
    • ACM RESEARCH (SHANGHAI) INC.
    • JIN, YinuoWANG, JianWANG, Hui
    • H01L21/302H01L21/304
    • H01L21/3212H01L21/32115H01L21/7684
    • The present invention provides a method for optimizing metal planarization process, comprising: removing a bulk metal layer on a top surface of an interconnection structure by a stressed polishing process until the thickness of the remained metal layer reaches a predetermined value Y, the remained metal layer being a continuous layer covering the top surface of the interconnection structure, wherein the remained metal layer has a first surface mean roughness Ra1 induced by the stressed polishing process; removing the remained metal layer on the top surface of the interconnection structure by a stress free polishing process, the top surface of the metal layer in recessed areas in the interconnection structure being lower than the top surface of the interconnection structure by a dishing value H2 after the stress free polishing process, wherein the metal layer in the recessed areas has a second surface mean roughness Ra2 induced by the stress free polishing process, dividing the removing thickness of the stress free polishing process by Ra2 for obtaining a ratio a; wherein when setting a dishing value, for obtaining the minimum metal surface roughness after the stress free polishing process, the thickness of the remained metal layer after the stressed polishing process satisfies the following equation: Y= α/6 *H2-αRa1.
    • 本发明提供一种用于优化金属平坦化工艺的方法,包括:通过应力抛光工艺去除互连结构的顶表面上的体金属层,直到残留的金属层的厚度达到预定值Y,剩下的金属层 是覆盖互连结构的顶表面的连续层,其中残留金属层具有由应力抛光工艺引起的第一表面平均粗糙度Ra1; 通过无应力抛光工艺去除互连结构的顶表面上的剩余金属层,互连结构中的凹陷区域中的金属层的顶表面比互连结构的顶表面之后的凹陷值H2低 无应力抛光工艺,其中凹陷区域中的金属层具有由无应力抛光工艺引起的第二表面平均粗糙度Ra2,将无应力抛光工艺的去除厚度除以Ra2以获得比率a; 其中,当设定凹陷值时,为了得到无应力研磨处理后的最小金属表面粗糙度,应力研磨工序后残留金属层的厚度满足下式:Y =α/ 6 * H2-αRa1。
    • 10. 发明申请
    • APPARATUS AND METHOD FOR UNIFORM METALLIZATION ON SUBSTRATE
    • 在基板上均匀金属化的装置和方法
    • WO2016082093A1
    • 2016-06-02
    • PCT/CN2014/092118
    • 2014-11-25
    • ACM RESEARCH (SHANGHAI) INC.
    • WANG, XiWANG, Hui
    • C25D5/20
    • C25D5/20C25D5/04C25D17/001C25D17/002C25D17/06C25D21/10
    • An apparatus and method for uniform metallization on substrate are provided, achieving highly uniform metallic film deposition at a rate far greater than a conventional film growth rate in electrolyte solutions. The apparatus includes an immersion bath (3021), at least one set of electrode (3002), a substrate holder (3003), at least one ultra/mega sonic device (3004), a reflection plate (3005), and a rotating actuator (3030). The immersion bath contains at least one metal salt electrolyte (3020). The at least one set of electrode (3002) connects to an independent power supply. The substrate holder (3003) holds at least one substrate and electrically connects with a conductive side of the substrate. The conductive side of the substrate is exposed to face the electrode. The at least one ultra/mega sonic device (3004) and the reflection plate (3005) are disposed parallel for generating ultra/mega sonic standing wave in the immersion bath. The rotating actuator (3030) rotates the substrate holder (3003) along its axis in the standing wave field, so as to result in a uniform overall power intensity distribution across the substrate in an accumulated time.
    • 提供了一种在基板上均匀金属化的装置和方法,其实现了高于电解质溶液中常规膜生长速率的高度均匀的金属膜沉积。 所述设备包括浸没池(3021),至少一组电极(3002),衬底保持器(3003),至少一个超声波设备(3004),反射板(3005)和旋转致动器 (3030)。 浸渍浴含有至少一种金属盐电解质(3020)。 至少一组电极(3002)连接到独立电源。 衬底保持器(3003)保持至少一个衬底并与衬底的导电侧电连接。 衬底的导电面暴露于面对电极。 所述至少一个超/超声波装置(3004)和反射板(3005)平行布置以在浸浴中产生超声/超声波驻波。 旋转致动器(3030)在驻波场中沿其轴线旋转衬底保持器(3003),从而在累积时间内在整个衬底上产生均匀的整体功率强度分布。