会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • ON CHIP ELECTRIC WAVES: AN ANALOG APPROACH TO PHYSICAL UNCLONABLE FUNCTIONS: PUF
    • 芯片电波:物理不可靠功能的模拟方法:PUF
    • WO2010105994A3
    • 2011-01-13
    • PCT/EP2010053234
    • 2010-03-12
    • UNIV MUENCHEN TECHRUEHRMAIR ULRICHSTUTZMANN MARTINCSABA GYOERGYSCHLICHTMANN ULFLUGLI PAOLO
    • RUEHRMAIR ULRICHSTUTZMANN MARTINCSABA GYOERGYSCHLICHTMANN ULFLUGLI PAOLO
    • H04L9/32
    • G06F21/10G06F21/31G06F21/73G06F2221/2103G06F2221/2129G09C1/00H04L9/3247H04L9/3278H04L2209/56H04L2209/603H04L2209/805
    • This application proposes the use of Cellular Non-Linear Networks (CNNs) as physical unclonable functions (PUFs). We argue that analogue circuits offer higher security than existing digital PUFs and that the CNN paradigm allows us to build large, unclonable, and scalable analogue PUFs, which still show a stable and repeatable input-output behaviour. CNNs are dynamical arrays of locally-interconnected cells, with a cell dynamics that depends upon the interconnection strengths to their neighbours. They can be designed to evolve in time according to partial differential equations. If this equation describes a physical phenomenon, then the CNN can simulate a complex physical system on-chip. This can be exploited to create electrical PUFs with high relevant structural information content. To illustrate our paradigm at work, we design a circuit that directly emulates nonlinear wave propagation phenomena in a random media. It effectively translates the complexity of optical PUFs into electrical circuits. This, leading to better practicality, while maintaining or even improving the security properties of their optical counterparts.
    • 该应用提出使用蜂窝非线性网络(CNN)作为物理不可克隆功能(PUF)。 我们认为,模拟电路提供比现有数字PUF更高的安全性,而CNN范式允许我们构建大型,不可克隆和可扩展的模拟PUF,这些PUF仍然显示稳定和可重复的输入输出行为。 CNN是本地互连的小区的动态阵列,其细胞动力学取决于与其邻居的互连强度。 它们可以被设计为根据偏微分方程在时间上进化。 如果这个方程描述了物理现象,那么CNN可以模拟片上复杂的物理系统。 这可以被利用来创建具有高相关结构信息内容的电气PUF。 为了说明我们在工作中的范例,我们设计了一种在随机介质中直接仿真非线性波传播现象的电路。 它有效地将光学PUF的复杂性转化为电路。 这导致更好的实用性,同时保持或甚至改善其光学对应物的安全性能。
    • 8. 发明申请
    • SEMICONDUCTOR BIOSENSORS
    • 半导体生物传感器
    • WO2010142773A3
    • 2011-06-09
    • PCT/EP2010058183
    • 2010-06-10
    • HELMHOLTZ ZENTRUM MUENCHENTHALHAMMER STEFANHOFSTETTER MARKUSHOWGATE JOHNSTUTZMANN MARTIN
    • THALHAMMER STEFANHOFSTETTER MARKUSHOWGATE JOHNSTUTZMANN MARTIN
    • C12M1/34G01N27/414G01N33/487G01N33/50G01T1/24
    • G01T1/02G01N33/48728
    • The present application relates to semiconductor devices, in particular to a device for monitoring a cell signal such as an electrical signal produced by living cells in response to external stimulation, optionally in real time, comprising (a) at least one discrete area comprising a high electron mobility transistor (HEMT); and (b) non - excitable cells attached to said HEMT (HEMT element) for example, fibroblasts, HEK, CHO cell lines, keratinocytes, etc. Preferably, the HEMT is an AlGaN/GaN FET. Accordingly, the device can be applied in uses and methods for monitoring a cell signal such as an electrical signal produced by living cells in response to external stimulation, optionally in real time. Likewise, the device can be applied for screening compounds that reverse, protect from and/or shield cells from external stimuli which cause damage to cells. Also, kits comprising the device are disclosed.
    • 本申请涉及半导体器件,特别涉及一种用于监视细胞信号的装置,例如可选地实时地响应于外部刺激而由活细胞产生的电信号,包括(a)至少一个离散区域,包括高 电子迁移率晶体管(HEMT); 和(b)附着于所述HEMT(HEMT元件)例如成纤维细胞,HEK,CHO细胞系,角质形成细胞等的不可兴奋细胞。优选地,HEMT是AlGaN / GaN FET。 因此,该设备可以应用于可选地实时监视响应于外部刺激的由活细胞产生的电信号的细胞信号的用途和方法。 同样,该装置可用于筛选从外部刺激反向,保护和/或屏蔽细胞的化合物,从而引起细胞损伤。 此外,公开了包括该装置的套件。
    • 10. 发明申请
    • NANOSCALE SILICON PARTICLES
    • 纳米硅胶颗粒
    • WO2007025793A1
    • 2007-03-08
    • PCT/EP2006/063953
    • 2006-07-06
    • DEGUSSA AGBAUMER, AndreaBRANDT, Martin,S.STUTZMANN, MartinWIGGERS, Hartmut
    • BAUMER, AndreaBRANDT, Martin,S.STUTZMANN, MartinWIGGERS, Hartmut
    • C01B33/027
    • C01B33/027Y10T428/2993
    • Nanoscale silicon particles that have a BET specific surface area in the range of 100 to 800 m2/g, that consist of an essentially round, mostly unfacetted crystalline Si core surrounded by an amorphous shell, the amorphous shell comprising silica and hydrogen-terminated silicon atoms and have a paramagnetic defect density in the range of 1013 to 1017 1/mg. Essentially hydrogen terminated, nanoscale silicon particles having a paramagnetic defect density in the range of 10 12 to 10 16 1/mg obtained by treating the nanoscale silicon particles with hydrofluoric acid. Essentially alkyl terminated nanoscale silicon particles having a paramagnetic defect density in the range of 3xl0 12 to 3xl0 16 1/mg obtained by treating the essentially hydrogen terminated, nanoscale silicon particles with one or more compounds selected from the group of 1-alkenes and/or 1-alkynes. Partially alkyl terminated nanoscale silicon particles having a paramagnetic paramagnetic defect density in the range of 3xl0 12 to 3xl0 16 1/mg obtained by treating the nanoscale silicon particles with one or more compounds selected from the group of 1-alkenes and/or 1-alkynes.
    • 具有100-800m2 / g范围内的BET比表面积的纳米级硅颗粒,其由被无定形壳包围的基本上圆形的,大部分为未结晶的晶体Si核构成,所述无定形壳包含二氧化硅和氢封端的硅原子 并且具有1013至1017 1 / mg范围内的顺磁性缺陷密度。 基本上氢封端,通过用氢氟酸处理纳米级硅颗粒而获得的具有在10 12至10 16 / mg范围内的顺磁性缺陷密度的纳米尺度硅颗粒。 本质上是烷基封端的纳米尺度硅颗粒,其具有通过用一个(例如)处理基本上氢的封端的纳米级硅颗粒获得的3×10 12至3×10 16 / mg范围内的顺磁性缺陷密度 或更多选自1-烯烃和/或1-炔烃的化合物。 通过用一种或多种化合物处理纳米尺度硅颗粒而获得的部分烷基封端的纳米尺度硅颗粒具有在3×10 12至3×10 16 / mg范围内的顺磁性顺磁性缺陷密度 选自1-烯烃和/或1-炔烃。