会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明申请
    • A SYSTEM AND METHOD FOR A SPARSE KERNEL EXPANSION FOR A BAYES CLASSIFIER
    • 一种用于贝叶类分类器的小型扩展的系统和方法
    • WO2005078638A3
    • 2005-10-06
    • PCT/US2005003806
    • 2005-02-04
    • SIEMENS MEDICAL SOLUTIONSDUNDAR MURATFUNG GLENNBI JINBORAO R BHARAT
    • DUNDAR MURATFUNG GLENNBI JINBORAO R BHARAT
    • G06K9/62
    • G06K9/6256
    • A method and device having instructions for analyzing input data-space by learning classifiers include choosing a candidate subset from a predetermined training data-set that is used to analyze the input data-space. Candidates are temporarily added from the candidate subset to an expansion set to generate a new kernel space for the input data-space by predetermined repeated evaluations of leave-one-out errors for the candidates added to the expansion set. This is followed by removing the candidates temporarily added to the expansion set after the leave-one-out error evaluations are performed, and selecting the candidates to be permanently added to the expansion set based on the leave-one-out errors of the candidates temporarily added to the expansion set to determine the one or more classifiers
    • 具有用于通过学习分类器分析输入数据空间的指令的方法和设备包括从用于分析输入数据空间的预定训练数据集中选择候选子集。 将候选者从候选子集临时添加到扩展集合,以通过对添加到扩展集合的候选者的一对一错误进行预先重复的评估来为输入数据空间生成新的内核空间。 之后,在执行一次性错误评估之后,删除临时添加到扩展集的候选者,并且基于临时的候选者的一次性错误选择要永久添加到扩展集的候选项 添加到扩展集以确定一个或多个分类器
    • 9. 发明申请
    • HIERARCHICAL MODELING IN MEDICAL ABNORMALITY DETECTION
    • 医学异常检测中的分层建模
    • WO2005078631A1
    • 2005-08-25
    • PCT/US2005/004188
    • 2005-02-09
    • SIEMENS MEDICAL SOLUTIONS USA, INC.KRISHNAN, SriramBI, JinboRAO, R. Bharat
    • KRISHNAN, SriramBI, JinboRAO, R. Bharat
    • G06F19/00
    • G16H50/20G06F19/00G16H50/50
    • Hierarchal modeling is used to distinguish one state (26, 28, 32, 34, 38, 40, 44, 46) or class from three or more classes. In a first stage, a normal (26) or other class is distinguished from a diseased (28) or other groups of classes. If the results of the first stage classification indicate diseased (28) or data within the groups of different classes, a subsequent stage of classification is performed. In a subsequent stage of classification, the data is classified to distinguish one or more other classes (32, 34, 38, 40, 44, 46) from the remaining classes. Using two or more stages, medical information is classified by eliminating one or more possible classes in each stage to finally identify a particular class (26, 28, 32, 34, 38, 40, 44, 46) most appropriate or probable for the data.
    • 分层建模用于将一个状态(26,28,32,34,38,40,44,46)或类与三个或更多个类别区分开。 在第一阶段,正常(26)或其他类别与患病(28)或其他类别的组不同。 如果第一阶段分类的结果表示患病(28)或不同类别的组内的数据,则进行后续分类阶段。 在分类的后续阶段,数据被分类以区分一个或多个其他类别(32,34,38,40,44,46)与其余类别。 使用两个或更多个阶段,通过消除每个阶段中的一个或多个可能的类别来分类医学信息,以最终确定最合适或可能的数据的特定类别(26,28,34,34,38,40,44,46) 。