会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 7. 发明申请
    • SYSTEMS AND METHODS FOR AUTOMATED DIAGNOSIS AND DECISION SUPPORT FOR HEART RELATED DISEASES AND CONDITIONS
    • 自动诊断和心理支持的系统与方法相关疾病和病症
    • WO2005081168A3
    • 2005-12-01
    • PCT/US2004040757
    • 2004-12-06
    • SIEMENS MEDICAL SOLUTIONSSIEMENS CORP RES INCKRISHNAN SRIRAMGUPTA ALOKRAO R BHARATCOMANICIU DORINZHOU XIANG SEAN
    • KRISHNAN SRIRAMGUPTA ALOKRAO R BHARATCOMANICIU DORINZHOU XIANG SEAN
    • A61B5/05G06F17/00G06F19/00
    • G16H50/20
    • CAD (computer-aided diagnosis) systems and applications for cardiac imaging are provided, which implement methods to automatically extract and analyze features from a collection of patient information (including image data and/or non-image data) of a subject patient, to provide decision support for various aspects of physician workflow including, for example, automated assessment of regional myocardial function through wall motion analysis, automated diagnosis of heart diseases and conditions such as cardiomyopathy, coronary artery disease and other heart-related medical conditions, and other automated decision support functions. The CAD systems implement machine-learning techniques that use a set of training data obtained (learned) from a database of labeled patient cases in one or more relevant clinical domains and/or expert interpretations of such data to enable the CAD systems to "learn" to analyze patient data and make proper diagnostic assessments and decisions for assisting physician workflow.
    • 提供了用于心脏成像的CAD(计算机辅助诊断)系统和应用,其实现了从受试患者的患者信息(包括图像数据和/或非图像数据)的集合中自动提取和分析特征的方法,以提供 对医师工作流程的各个方面的决策支持,包括例如通过壁运动分析自动评估区域心肌功能,心脏疾病的自动诊断和诸如心肌病,冠状动脉疾病和其他与心脏相关的医疗状况等条件,以及其他自动化决策 支持功能。 CAD系统实施机器学习技术,其使用从一个或多个相关临床领域的标记的患者病例的数据库获得(学习)的一组训练数据和/或对这些数据的专家解释,使得CAD系统能够“学习” 分析患者数据,进行适当的诊断评估和决策,以协助医师的工作流程。
    • 9. 发明申请
    • HIERARCHICAL MODELING IN MEDICAL ABNORMALITY DETECTION
    • 医学异常检测中的分层建模
    • WO2005078631A1
    • 2005-08-25
    • PCT/US2005/004188
    • 2005-02-09
    • SIEMENS MEDICAL SOLUTIONS USA, INC.KRISHNAN, SriramBI, JinboRAO, R. Bharat
    • KRISHNAN, SriramBI, JinboRAO, R. Bharat
    • G06F19/00
    • G16H50/20G06F19/00G16H50/50
    • Hierarchal modeling is used to distinguish one state (26, 28, 32, 34, 38, 40, 44, 46) or class from three or more classes. In a first stage, a normal (26) or other class is distinguished from a diseased (28) or other groups of classes. If the results of the first stage classification indicate diseased (28) or data within the groups of different classes, a subsequent stage of classification is performed. In a subsequent stage of classification, the data is classified to distinguish one or more other classes (32, 34, 38, 40, 44, 46) from the remaining classes. Using two or more stages, medical information is classified by eliminating one or more possible classes in each stage to finally identify a particular class (26, 28, 32, 34, 38, 40, 44, 46) most appropriate or probable for the data.
    • 分层建模用于将一个状态(26,28,32,34,38,40,44,46)或类与三个或更多个类别区分开。 在第一阶段,正常(26)或其他类别与患病(28)或其他类别的组不同。 如果第一阶段分类的结果表示患病(28)或不同类别的组内的数据,则进行后续分类阶段。 在分类的后续阶段,数据被分类以区分一个或多个其他类别(32,34,38,40,44,46)与其余类别。 使用两个或更多个阶段,通过消除每个阶段中的一个或多个可能的类别来分类医学信息,以最终确定最合适或可能的数据的特定类别(26,28,34,34,38,40,44,46) 。