会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method for single crystal growth of barium titanate and barium titanate solid solution
    • 钛酸钡和钛酸钡固溶体的单晶生长方法
    • US06758898B2
    • 2004-07-06
    • US10163526
    • 2002-06-07
    • Ho-Yong LeeJao-Suk KimJong-Bong LeeTae-Moo HurDoe-Yeon KimNong-Moon HwangByoung-Ki LeeSung-Yoon ChungSuk-Joong L. Kang
    • Ho-Yong LeeJao-Suk KimJong-Bong LeeTae-Moo HurDoe-Yeon KimNong-Moon HwangByoung-Ki LeeSung-Yoon ChungSuk-Joong L. Kang
    • C30B102
    • C30B11/00C30B29/32
    • The invention relates to a method for growing single crystals of barium titanate [BaTiO3] and barium titanate solid solutions [(BaxM1−x)(TiyN1−y)O3]. This invention is directed to a method for growing single crystals of barium titanate or barium titanate solid solutions showing the primary and secondary abnormal grain growths with increasing temperature higher than the liquid formation temperature, characterized by comprising the step for a few secondary abnormal grains to continue to grow at a temperature slightly below the critical temperature where the secondary abnormal grain growth starts to occur. The method for growing single crystals of barium titanate or barium titanate solid solutions according to this invention has the advantage of providing an effective low cost in manufacturing process for single crystals by using a conventional heat-treatment process without the need of special equipment. The method for growing single crystals of barium titanate and barium titanate solid solutions according to this invention is also applicable to other material systems showing abnormal grain growth behavior.
    • 本发明涉及一种生长钛酸钡[BaTiO3]和钛酸钡固溶体[(BaxM1-x)(TiyN1-y)O3]单晶的方法。 本发明涉及一种用于生长钛酸钡或钛酸钡固体溶液的单晶的方法,其显示出主要和次要的异常晶粒生长,其温度高于液体形成温度,其特征在于包括少量次级异常晶粒继续的步骤 在略低于次生异常晶粒生长开始发生的临界温度的温度下生长。 根据本发明的用于生长钛酸钡或钛酸钡固溶体的单晶的方法具有通过使用常规热处理工艺而不需要特殊设备来提供单晶制造工艺的有效低成本的优点。 根据本发明的用于生长钛酸钡和钛酸钡固溶体的单晶的方法也适用于显示异常晶粒生长行为的其它材料体系。
    • 3. 发明授权
    • Method for processing wafers in a semiconductor fabrication system
    • 在半导体制造系统中处理晶片的方法
    • US06592661B1
    • 2003-07-15
    • US09028979
    • 1998-02-25
    • Randhir P. S. ThakurRonald A. Weimer
    • Randhir P. S. ThakurRonald A. Weimer
    • C30B102
    • C30B31/12
    • A method of manufacturing semiconductor wafers in a processing chamber having at least one radiant heat source is provided. The method includes the steps of applying a predetermined amount of power to the radiant heat source and positioning a wafer within the processing chamber. The predetermined amount of power applied to the at least one radiant heat source is set such that the wafer reaches a predetermined temperature in a predetermined amount of time for carrying out a desired process in the processing chamber. The processing chamber is particularly suited for very low pressure environments and may be used to form HSG in a clustered or non-clustered system. A reflective plate may be used so that the radiated properties of the wafer are substantially independent of the emissivity of the wafer thereby minimizing emissivity variation from one wafer to another. Another plate may be used to form an isothermal cavity between the plate and the wafer to minimize emissivity variation from one wafer to another.
    • 提供了在具有至少一个辐射热源的处理室中制造半导体晶片的方法。 该方法包括以下步骤:向辐射热源施加预定量的功率并将晶片定位在处理室内。 设置施加到至少一个辐射热源的预定量的功率,使得晶片在预定时间内达到预定温度,以在处理室中进行所需的处理。 处理室特别适用于非常低压的环境,并可用于在集群或非集群系统中形成HSG。 可以使用反射板,使得晶片的辐射特性基本上与晶片的发射率无关,从而使从一个晶片到另一个晶片的发射率变化最小化。 可以使用另一个板来在板和晶片之间形成等温腔,以使从一个晶片到另一个晶片的发射率变化最小化。
    • 4. 发明授权
    • Ideal oxygen precipitating epitaxial silicon wafers and oxygen out-diffusion-less process therefor
    • 理想的氧气沉淀外延硅晶片和氧气外扩散工艺
    • US06537368B2
    • 2003-03-25
    • US09928739
    • 2001-08-13
    • Robert J. FalsterMarco CornaraDaniela GambaroMassimiliano Olmo
    • Robert J. FalsterMarco CornaraDaniela GambaroMassimiliano Olmo
    • C30B102
    • H01L21/3225Y10S257/913Y10T428/21Y10T428/249969
    • A process for preparing a silicon epitaxial wafer. The wafer has a front surface having an epitaxial layer deposited thereon, a back surface, and a bulk region between the front and back surfaces, wherein the bulk region contains a concentration of oxygen precipitates. In the process, the wafer is first subjected to an ideal oxygen precipitating heat treatment to causes the formation of a non-uniform distribution of crystal lattice vacancies with the concentration of vacancies in the bulk region being greater than the distribution of vacancies in the front surface. The ideal precipitating wafer is then subjected to an oxygen precipitation heat treatment to cause the nucleation and growth of oxygen precipitates to a size sufficient to stabilize the oxygen precipitates, with the oxygen precipitates being formed primarily according to the vacancy profile. An epitaxial layer is then deposited on the surface of the oxygen precipitate stabilized wafer.
    • 一种制备硅外延晶片的方法。 晶片具有在其上沉积有外延层的前表面,后表面和前表面和后表面之间的主体区域,其中主体区域含有氧沉淀物的浓度。 在此过程中,首先对晶片进行理想的氧沉淀热处理,导致晶体空位的不均匀分布形成,其中本体区域中的空位浓度大于前表面空位的分布 。 然后对理想的沉淀晶片进行氧沉淀热处理,使氧沉淀物的成核和生长达到足以稳定氧沉淀物的尺寸,其中主要根据空位曲线形成氧沉淀物。 然后在氧沉淀稳定晶片的表面上沉积外延层。
    • 8. 发明授权
    • Method of crystallizing silicon layer
    • 硅层结晶方法
    • US06193796B1
    • 2001-02-27
    • US09212506
    • 1998-12-15
    • Myoung-Su Yang
    • Myoung-Su Yang
    • C30B102
    • C30B29/06C30B13/24Y10S117/904
    • A method of crystallizing an amorphous silicon layer to form a polycrystalline silicon layer having uniform and large grain sizes using an improved laser beam profile despite a reduced overlapping ratio. The polycrystalline layer is formed by melting the amorphous silicon layer completely, forming a polycrystalline silicon layer having fine grains by crystallizing the melted silicon layer, re-melting the fine grains in the polycrystalline silicon layer except a portion of the layer at a lower interface thereof, and re-crystallizing the silicon layer including the unmelted portion.
    • 使用改进的激光束轮廓来结晶非晶硅层以形成具有均匀且大的晶粒尺寸的多晶硅层的方法,尽管重叠比率降低。 通过使非晶硅层完全熔融而形成多晶硅层,通过使熔融的硅层结晶而形成具有微细晶粒的多晶硅层,再次熔融多晶硅层中的细晶粒,除了其下部界面处的该层的一部分 并且使包含未熔化部分的硅层再结晶。