会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Protected encapsulation of catalytic layer for electroless copper
interconnect
    • 用于无电铜互连的催化层的保护封装
    • US5824599A
    • 1998-10-20
    • US587264
    • 1996-01-16
    • Yosef Schacham-DiamandValery M. DubinChiu H. TingBin ZhaoPrahalad K. VasudevMelvin Desilva
    • Yosef Schacham-DiamandValery M. DubinChiu H. TingBin ZhaoPrahalad K. VasudevMelvin Desilva
    • H01L21/768H01L21/44
    • H01L21/76834H01L21/76838H01L21/76843H01L21/76874H01L21/76858Y10S977/712Y10S977/81Y10S977/888Y10S977/89
    • A method for utilizing electroless copper deposition to form interconnects on a semiconductor. Once a via or a trench is formed in a dielectric layer, a titanium nitride (TiN) or tantalum (Ta) barrier layer is deposited. Then, a catalytic copper seed layer is conformally blanket deposited in vacuum over the barrier layer. Next, without breaking the vacuum, an aluminum protective layer is deposited onto the catalytic layer to encapsulate and protect the catalytic layer from oxidizing. An electroless deposition technique is then used to auto-catalytically deposit copper on the catalytic layer. The electroless deposition solution dissolves the overlying protective layer to expose the surface of the underlying catalytic layer. The electroless copper deposition occurs on this catalytic surface, and continues until the via/trench is filled. Subsequently, the copper and barrier material are polished by an application of chemical-mechanical polishing (CMP) to remove excess copper and barrier material from the surface, so that the only copper and barrier material remaining are in the via/trench openings. Then an overlying silicon nitride (SiN) layer is formed above the exposed copper in order to form a dielectric barrier layer. The copper interconnect is fully encapsulated from the adjacent material by the TiN (or Ta) barrier layer and the overlying SiN layer.
    • 一种利用无电铜沉积在半导体上形成互连的方法。 一旦在电介质层中形成通孔或沟槽,则沉积氮化钛(TiN)或钽(Ta)阻挡层。 然后,催化铜籽晶层在真空中在阻挡层上共形地覆盖。 接下来,在不破坏真空的情况下,将铝保护层沉积到催化剂层上以包封并保护催化剂层免于氧化。 然后使用无电沉积技术在催化剂层上自动催化沉积铜。 无电沉积溶液溶解上覆的保护层以暴露下面的催化剂层的表面。 无电铜沉积发生在该催化剂表面上,并持续直到通孔/沟槽被填充。 随后,通过施加化学机械抛光(CMP)来抛光铜和阻挡材料,以从表面去除多余的铜和阻挡材料,使得剩余的唯一的铜和阻挡材料在通孔/沟槽开口中。 然后,在暴露的铜上方形成覆盖氮化硅(SiN)层,以形成电介质阻挡层。 铜互连通过TiN(或Ta)阻挡层和覆盖的SiN层从相邻材料完全封装。
    • 4. 发明授权
    • Selective electroless copper deposited interconnect plugs for ULSI
applications
    • 用于ULSI应用的选择性无电铜沉积互连插头
    • US5674787A
    • 1997-10-07
    • US587263
    • 1996-01-16
    • Bin ZhaoPrahalad K. VasudevValery M. DubinYosef Shacham-DiamandChiu H. Ting
    • Bin ZhaoPrahalad K. VasudevValery M. DubinYosef Shacham-DiamandChiu H. Ting
    • H01L21/288H01L21/768H01L21/28
    • H01L21/76831H01L21/288H01L21/76849H01L21/76874H01L21/76879Y10S977/81
    • A method or utilizing electroless copper deposition to selectively form encapsulated copper plugs to connect conductive regions on a semiconductor. A via opening in an inter-level dielectric (ILD) provides a path for connecting two conductive regions separated by the ILD. Once the underlying metal layer is exposed by the via opening, a SiN or SiON dielectric encapsulation layer is formed along the sidewalls of the via. Then, a contact displacement technique is used to form a thin activation layer of copper on a barrier metal, such as TiN, which is present as a covering layer on the underlying metal layer. After the contact displacement of copper on the barrier layer at the bottom of the via, an electroless copper deposition technique is then used to auto-catalytically deposit copper in the via. The electroless copper deposition continues until the via is almost filled, but leaving sufficient room at the top in order to form an upper encapsulation layer. The SiN or SiON sidewalls, the bottom barrier layer and the cap barrier layer function to fully encapsulate the copper plug in the via. The plug is then annealed.
    • 一种方法或利用无电镀铜沉积来选择性地形成封装的铜塞以连接半导体上的导电区域。 层间电介质(ILD)中的通孔开口提供用于连接由ILD分离的两个导电区域的路径。 一旦底层金属层被通孔开口暴露,沿通孔的侧壁形成SiN或SiON电介质封装层。 然后,使用接触位移技术在阻挡金属上形成薄的铜活化层,例如在下面的金属层上作为覆盖层存在的TiN。 在通孔底部的阻挡层上的铜的接触位移之后,然后使用无电解铜沉积技术自动催化将铜沉积在通孔中。 无电铜沉积继续直到通孔几乎被填充,但是在顶部留下足够的空间以形成上封装层。 SiN或SiON侧壁,底部阻挡层和帽阻挡层用于将铜塞完全封装在通孔中。 然后将塞子退火。
    • 10. 发明申请
    • CARBON NANOTUBE INTERCONNECT STRUCTURES
    • 碳纳米管互连结构
    • US20100022083A1
    • 2010-01-28
    • US12548779
    • 2009-08-27
    • Florian GstreinValery M. DubinJuan E. DominguezAdrien R. Lavoie
    • Florian GstreinValery M. DubinJuan E. DominguezAdrien R. Lavoie
    • H01L21/768
    • H01L21/76877H01L21/76838H01L23/53276H01L2221/1094H01L2924/0002Y10S977/742Y10S977/75H01L2924/00
    • A method including forming an interconnect of single-walled carbon nanotubes on a sacrificial substrate; transferring the interconnect from the sacrificial substrate to a circuit substrate; and coupling the interconnect to a contact point on the circuit substrate. A method including forming a nanotube bundle on a circuit substrate between a first contact point and a second contact point, the nanotube defining a lumen therethrough; filling a portion of a length of the lumen of the nanotube bundle with an electrically conductive material; and coupling the electrically conductive material to the second contact point. A system including a computing device comprising a microprocessor, the microprocessor coupled to a printed circuit board, the microprocessor including a substrate having a plurality of circuit devices with electrical connections made to the plurality of circuit devices through interconnect structures including carbon nanotube bundles.
    • 一种包括在牺牲衬底上形成单层碳纳米管的互连的方法; 将所述互连件从所述牺牲衬底转移到电路衬底; 以及将所述互连件耦合到所述电路基板上的接触点。 一种方法,包括在第一接触点和第二接触点之间的电路基板上形成纳米管束,所述纳米管限定通过其的腔; 用导电材料填充纳米管束管腔长度的一部分; 以及将所述导电材料耦合到所述第二接触点。 一种包括计算设备的系统,包括微处理器,微处理器耦合到印刷电路板,微处理器包括具有多个电路器件的衬底,该电路器件具有通过包括碳纳米管束的互连结构与多个电路器件形成的电连接。