会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Methods for making a dielectric stack in an integrated circuit
    • 在集成电路中制作电介质叠层的方法
    • US06660660B2
    • 2003-12-09
    • US09945463
    • 2001-08-31
    • Suvi P. HaukkaMarko Tuominen
    • Suvi P. HaukkaMarko Tuominen
    • H01L2131
    • H01L21/3162C23C16/40C23C16/403C23C16/45529H01L21/02178H01L21/02189H01L21/02192H01L21/022H01L21/0228H01L21/02299H01L21/3142H01L21/31604H01L28/56Y10S977/891
    • An ultrathin aluminum oxide and lanthanide layers, particularly formed by an atomic layer deposition (ALD) type process, serve as interface layers between two or more materials. The interface layers can prevent oxidation of a substrate and can prevent diffusion of molecules between the materials. In the illustrated embodiments, a high-k dielectric material is sandwiched between two layers of aluminum oxide or lanthanide oxide in the formation of a transistor gate dielectric or a memory cell dielectric. Aluminum oxides can serve as a nucleation layer with less than a full monolayer of aluminum oxide. One monolayer or greater can also serve as a diffusion barrier, protecting the substrate from oxidation and the high-k dielectric from impurity diffusion. Nanolaminates can be formed with multiple alternating interface layers and high-k layers, where intermediate interface layers can break up the crystal structure of the high-k materials and lower leakage levels.
    • 特别是通过原子层沉积(ALD)型方法形成的超薄氧化铝和镧系元素层用作两种或多种材料之间的界面层。 界面层可以防止基底的氧化并且可以防止分子在材料之间的扩散。 在所示实施例中,在形成晶体管栅极电介质或存储单元电介质时,高k介电材料夹在两层氧化铝或镧系元素氧化物之间。 氧化铝可用作具有少于全部氧化铝单层的成核层。 一个或多个单层也可以用作扩散阻挡层,保护基底免受氧化和高k电介质的杂质扩散。 纳米材料可以形成多个交替界面层和高k层,其中中间界面层可以分解高k材料的晶体结构并降低泄漏水平。
    • 4. 发明授权
    • Method of forming ultrathin oxide layer
    • 形成超薄氧化层的方法
    • US06492283B2
    • 2002-12-10
    • US09791167
    • 2001-02-22
    • Ivo RaaijmakersYong-Bae KimMarko TuominenSuvi P. Haukka
    • Ivo RaaijmakersYong-Bae KimMarko TuominenSuvi P. Haukka
    • H01L2131
    • H01L21/28194H01L21/02049H01L21/02052H01L21/02238H01L21/02255H01L21/02299H01L21/02359H01L21/28167H01L21/28211H01L21/31662H01L29/517Y10S438/906
    • A method is disclosed for forming an ultrathin oxide layer of uniform thickness. The method is particularly advantageous for producing uniformly thin interfacial oxides beneath materials of high dielectric permittivity, or uniformly thin passivation oxides. Hydrofluoric (HF) etching of a silicon surface, for example, is followed by termination of the silicon surface with ligands larger than H or F, particularly hydroxyl, alkoxy or carboxylic tails. The substrate is oxidized with the surface termination in place. The surface termination and relatively low temperatures moderate the rate of oxidation, such that a controllable thickness of oxide is formed. In some embodiments, the ligand termination is replaced with OH prior to further deposition. The deposition preferably includes alternating, self-limiting chemistries in an atomic layer deposition process, though any other suitable deposition process can be used. Two or more of the HF etching, surface termination, oxidation, hydroxyl replacement of the surface termination and deposition on the oxide can be conducted in situ.
    • 公开了形成均匀厚度的超薄氧化物层的方法。 该方法特别有利于在高介电常数材料或均匀薄的钝化氧化物材料下制备均匀的薄界面氧化物。 例如,硅表面的氢氟酸(HF)蚀刻之后,用大于H或F的配体,特别是羟基,烷氧基或羧酸尾部的配位体终止硅表面。 衬底被氧化,表面终止就位。 表面终止和相对低的温度调节氧化速率,使得形成可控的氧化物厚度。 在一些实施方案中,在进一步沉积之前,将配体终止物用OH代替。 沉积优选地包括在原子层沉积工艺中的交替的自限制化学,尽管可以使用任何其它合适的沉积工艺。 HF蚀刻,表面终止,氧化,羟基取代表面终止和沉积在氧化物上的两个或多个可以原位进行。
    • 6. 发明授权
    • Method of forming ultrathin oxide layer
    • 形成超薄氧化层的方法
    • US06794314B2
    • 2004-09-21
    • US10281418
    • 2002-10-25
    • Ivo RaaijmakersYong-Bae KimMarko TuominenSuvi P. Haukka
    • Ivo RaaijmakersYong-Bae KimMarko TuominenSuvi P. Haukka
    • H01L2131
    • H01L21/28194H01L21/02049H01L21/02052H01L21/02238H01L21/02255H01L21/02299H01L21/02359H01L21/28167H01L21/28211H01L21/31662H01L29/517Y10S438/906
    • A method is disclosed for forming an ultrathin oxide layer of uniform thickness. The method is particularly advantageous for producing uniformly thin interfacial oxides beneath materials of high dielectric permitivity, or uniformly thin passivation oxides. Hydrofluoric (HF) etching of a silicon surface, for example, is followed by termination of the silicon surface with ligands larger than H or F, particularly hydroxyl, alkoxy or carboxylic tails. The substrate is oxidized with the surface termination in place. The surface termination and relatively low temperatures moderate the rate of oxidation, such that a controllable thickness of oxide is formed. In some embodiments, the ligand termination is replaced with OH prior to further deposition. The deposition preferably includes alternating, self-limiting chemistries in an atomic layer deposition process, though any other suitable deposition process can be used. Two or more of the HF etching, surface termination, oxidation, hydroxyl replacement of the surface termination and deposition on the oxide can be conducted in situ.
    • 公开了形成均匀厚度的超薄氧化物层的方法。 该方法特别有利于在高介电常数材料或均匀薄的钝化氧化物材料下制备均匀的薄界面氧化物。 例如,硅表面的氢氟酸(HF)蚀刻之后,用大于H或F的配体,特别是羟基,烷氧基或羧酸尾部的配位体终止硅表面。 衬底被氧化,表面终止就位。 表面终止和相对低的温度调节氧化速率,使得形成可控的氧化物厚度。 在一些实施方案中,在进一步沉积之前,将配体终止物用OH代替。 沉积优选地包括在原子层沉积工艺中的交替的自限制化学,尽管可以使用任何其它合适的沉积工艺。 HF蚀刻,表面终止,氧化,羟基取代表面终止和沉积在氧化物上的两个或多个可以原位进行。
    • 9. 发明申请
    • METHODS FOR FORMING CARBON NANOTUBES
    • 形成碳纳米管的方法
    • US20090246367A1
    • 2009-10-01
    • US12058565
    • 2008-03-28
    • Hannu A. HuotariSuvi P. Haukka
    • Hannu A. HuotariSuvi P. Haukka
    • B05D7/00
    • C30B29/602B82Y30/00B82Y40/00C01B32/162C30B25/00C30B29/02
    • Methods of forming a roughened metal surface on a substrate for nucleating carbon nanotube growth, and subsequently growing carbon nanotubes are provided. In preferred embodiments roughened surfaces are formed by selectively depositing metal or metal oxide on a substrate surface to form discrete, three-dimensional islands. Selective deposition may be obtained, for example, by modifying process conditions to cause metal agglomeration or by treating the substrate surface to provide a limited number of discontinuous reactive sites. The roughened metal surface may then be used as nucleation points for initiating carbon nanotube growth. The carbon nanotubes are grown in the same process chamber (in-situ) as the formation of the three dimensional metal islands without exposing the substrate to air.
    • 提供了在用于成核碳纳米管生长的基底上形成粗糙金属表面,随后生长碳纳米管的方法。 在优选实施例中,通过在衬底表面上选择性地沉积金属或金属氧化物以形成离散的三维岛状体来形成粗糙表面。 可以例如通过改变工艺条件以引起金属聚集或通过处理衬底表面以提供有限数量的不连续反应位点来获得选择性沉积。 然后可以将粗糙化的金属表面用作引发碳纳米管生长的成核点。 碳纳米管在与三维金属岛的形成相同的处理室(原地)生长,而不将基板暴露于空气中。