会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Quantum well exciton-polariton light emitting diode
    • 量子阱激子 - 极化子发光二极管
    • US5877509A
    • 1999-03-02
    • US970948
    • 1997-11-14
    • Stanley PauHui CaoYoshihisa Yamamoto
    • Stanley PauHui CaoYoshihisa Yamamoto
    • H01L33/06H01L33/10H01L29/06
    • H01L33/06B82Y10/00H01L33/105
    • A light emitting device made of semiconducting materials. The device has an optical microcavity which supports a resonant mode of predetermined photon energy. Within the cavity is a quantum well of predetermined thickness and energy depth. The quantum well is designed such that it forms bound electron, exciton, lower polariton, and hole energy states of predetermined energy. The energy of an exciton state is set to equal the predetermined photon energy of the microcavity mode such that polariton states are created. A means is provided for resonantly tunneling electrons into a quantum well energy state. In a first embodiment, electrons resonantly tunnel into an electron energy state. In a second embodiment, electrons resonantly tunnel into an exciton energy state, during which tunneling the electrons simultaneously fuse with holes to form excitons. In the first embodiment, the electron state to lower polariton state transition energy is made equal to the energy of a longitudinal optical (LO) phonon of the quantum well material. This energy equivalence facilitates the rapid thermalization of resonantly tunneled electrons to combine with holes and form polaritons resonant with the cavity mode. Thermalization is rapid because it only requires the scattering of a single LO phonon. The photon component of the polariton is then emitted through the leaky cavity reflector. The second embodiment sets the exciton to polariton transition energy equal to the LO phonon energy to facilitate rapid thermalization to the polariton state. Photons are then emitted through the leaky Bragg reflector in the same manner as the first embodiment.
    • 由半导体材料制成的发光器件。 该器件具有支持预定光子能量的共振模式的光学微腔。 在腔内是一个预定厚度和能量深度的量子阱。 量子阱被设计成使其形成结合的电子,激子,低极化子和预定能量的空穴能态。 将激子状态的能量设定为等于微腔模式的预定光子能量,从而产生极化子态。 提供了一种用于将电子谐振地隧穿到量子阱能量状态的装置。 在第一实施例中,电子谐振地隧穿成电子能态。 在第二个实施例中,电子谐振地隧道入激子能态,在此期间,电子同时与空穴一起熔化以形成激子。 在第一实施例中,将使极性较小的跃迁能量降低的电子状态等于量子阱材料的纵向光学(LO)声子的能量。 这种能量等价有助于谐振隧穿电子的快速热化与空穴结合并形成与腔模共振的极化子。 热化是快速的,因为它只需要单个LO声子的散射。 然后通过泄漏腔反射器发射极化子的光子分量。 第二实施例将激子设置为等于LO声子能量的极化子跃迁能量,以促进快速热化至极化子态。 然后以与第一实施例相同的方式通过漏布拉格反射器发射光子。
    • 7. 发明授权
    • Wafer supported, out-of-plane ion trap devices
    • 晶圆支撑,平面外离子阱装置
    • US07012250B1
    • 2006-03-14
    • US11003823
    • 2004-12-03
    • Vladimir Anatolyevich AksyukStanley Pau
    • Vladimir Anatolyevich AksyukStanley Pau
    • B01D59/44H01J49/00H01J49/26H01J49/42
    • H01J49/424H01J49/0018
    • An ion trap device comprises a wafer that supports at least one plate forming an ion trapping region therebetween. The plate has an electrically insulating surface and a multiplicity of electrodes disposed on the insulating surface. The electrodes form at least one ion trap in the trapping region when suitable voltages are applied to the electrodes via conductors coupled to the wafer. The device has a multiplicity of ports for introducing ions into the trapping region and for extracting ions from that region. In embodiments that include a multiplicity of such plates, a first one of the plates is oriented at a non-zero angle to the major surface of the wafer and is rotateably mounted on that surface. In one embodiment, at least two of the plates form an elongated micro-channel having an axis of ion propagation, and the electrodes on at least one of the two plates are segmented along the direction of the axis, thereby forming a multiplicity of ion traps along the axis. A controller applies suitable voltage (e.g., sequentially) to the segmented electrodes, thereby shifting ions from one trap to another. Preferably, the electrodes on the two plates are segmented. Applications to mass spectrometers and shift registers are described.
    • 离子阱装置包括支撑至少一个在其间形成离子捕获区的板的晶片。 该板具有电绝缘表面和设置在绝缘表面上的多个电极。 当适当的电压通过耦合到晶片的导体施加到电极时,电极在俘获区域中形成至少一个离子阱。 该装置具有用于将离子引入俘获区域并从该区域提取离子的多个端口。 在包括多个这样的板的实施例中,第一板被定向成与晶片的主表面成非零角度并且可旋转地安装在该表面上。 在一个实施例中,至少两个板形成具有离子传播轴线的细长微通道,并且两个板中的至少一个板上的电极沿轴线方向分段,从而形成多个离子阱 沿着轴。 控制器将合适的电压(例如,顺序地)施加到分段的电极,从而将离子从一个阱移动到另一个。 优选地,将两个板上的电极分段。 描述了对质谱仪和移位寄存器的应用。
    • 10. 发明授权
    • Planar micro-miniature ion trap devices
    • 平面微型离子阱装置
    • US07217922B2
    • 2007-05-15
    • US11079861
    • 2005-03-14
    • Matthew Douglas Apau JachowskiYee Leng LowStanley Pau
    • Matthew Douglas Apau JachowskiYee Leng LowStanley Pau
    • B01D59/44H01J49/00
    • H01J49/424H01J49/0018
    • A micro-miniature ion trap device comprises a wafer (or substrate) having a major surface, a multiplicity of electrodes forming a micro-miniature ion trap in a region adjacent the major surface when voltage is applied to the electrodes, characterized in that the multiplicity includes a first, planar annular electrode located over and rigidly affixed to the major surface, and at least one second, planar annular electrode located over and rigidly affixed to the major surface, the at least one second electrode being concentric with the first electrode. The at least one second electrode may be completely annular, in that the annulus forms a closed geometric shape, or it may be partially annular, in that the annulus has a slot or opening allowing access to the first electrode. In accordance with a preferred embodiment of our invention, the at least one second electrode is C-shaped, and the angle subtended by the C-shape is greater than 180 degrees.
    • 微型离子阱装置包括具有主表面的晶片(或衬底),当电压施加到电极时,在与主表面相邻的区域中形成微型离子阱的多个电极,其特征在于多重 包括位于主表面上并刚性地固定到主表面上的第一平面环形电极和位于主表面上并刚性地固定到主表面上的至少一个第二平面环形电极,所述至少一个第二电极与第一电极同心。 至少一个第二电极可以是完全环形的,因为环形部分形成封闭的几何形状,或者它可以是部分环形的,因为环形空间具有允许进入第一电极的槽或开口。 根据本发明的优选实施例,所述至少一个第二电极是C形的,并且由C形形成的角度大于180度。