会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • Low parasitic capacitance schottky diode
    • 低寄生电容肖特基二极管
    • US20060125039A1
    • 2006-06-15
    • US11135846
    • 2005-05-23
    • Sharon LevinShye ShapiraIra Naot
    • Sharon LevinShye ShapiraIra Naot
    • H01L29/47H01L21/44
    • H01L27/0629H01L29/665H01L29/6659H01L29/7833H01L29/872
    • A low parasitic capacitance Schottky diode including a lightly doped polycrystalline silicon island that is formed on a shallow trench isolation (STI) pad such that the polycrystalline silicon island is entirely isolated from an underlying silicon substrate by the STI pad. The resulting structure reduces leakage and capacitive coupling to the substrate. Silicide contact structures are attached to lightly-doped and heavily-doped regions of the polycrystalline silicon island to form the Schottky junction and Ohmic contact, respectively, and are connected by metal structures to other components formed on the silicon substrate. The STI pad, polycrystalline silicon island, and silicide/metal contacts are formed using a standard CMOS process flow to minimize cost. A bolometer detector is provided by measuring current through the diode in reverse bias. An array of such detectors comprises an infrared or optical image sensor.
    • 包括形成在浅沟槽隔离(STI)焊盘上的轻掺杂多晶硅岛的低寄生电容肖特基二极管,使得多晶硅岛通过STI焊盘与下面的硅衬底完全隔离。 所得到的结构减少了泄漏和电容耦合到衬底。 硅化物接触结构分别连接到多晶硅岛的轻掺杂和重掺杂区域以形成肖特基结和欧姆接触,并且通过金属结构连接到形成在硅衬底上的其它组分。 使用标准CMOS工艺流程形成STI焊盘,多晶硅岛和硅化物/金属触点以最小化成本。 通过以反向偏置测量通过二极管的电流来提供测辐射热计检测器。 这种检测器的阵列包括红外或光学图像传感器。
    • 4. 发明授权
    • Gate defined Schottky diode
    • 门限定肖特基二极管
    • US07544557B2
    • 2009-06-09
    • US11255627
    • 2005-10-21
    • Sharon LevinShye ShapiraIra NaotRobert J. StrainYossi Netzer
    • Sharon LevinShye ShapiraIra NaotRobert J. StrainYossi Netzer
    • H01L21/8238
    • H01L29/872H01L27/0814H01L27/095
    • A Schottky diode exhibiting low series resistance is efficiently fabricated using a substantially standard CMOS process flow by forming the Schottky diode using substantially the same structures and processes that are used to form a field effect transistor (FET) of a CMOS IC device. Polycrystalline silicon, which is used to form the gate structure of the FET, is utilized to form an isolation structure between the Schottky barrier and backside structure of the Schottky diode. Silicide (e.g., cobalt silicide (CoSi2)) structures, which are utilized to form source and drain metal-to-silicon contacts in the FET, are used to form the Schottky barrier and backside Ohmic contact of the Schottky diode. Heavily doped drain (HDD) diffusions and lightly doped drain (LDD) diffusions, which are used to form source and drain diffusions of the FET, are utilized to form a suitable contact diffusion under the backside contact silicide.
    • 使用与用于形成CMOS IC器件的场效应晶体管(FET)的基本相同的结构和工艺,通过形成肖特基二极管,通过使用基本上标准的CMOS工艺流程,有效地制造了具有低串联电阻的肖特基二极管。 用于形成FET的栅极结构的多晶硅用于在肖特基势垒和肖特基二极管的背侧结构之间形成隔离结构。 用于在FET中形成源极和漏极金属 - 硅触点的硅化物(例如,硅化钴(CoSi 2))结构被用于形成肖特基势垒和肖特基二极管的背面欧姆接触。 用于形成FET的源极和漏极扩散的重掺杂漏极(HDD)扩散和轻掺杂漏极(LDD)扩散被用于在背侧接触硅化物下形成合适的接触扩散。
    • 5. 发明授权
    • Cobalt silicide schottky diode on isolated well
    • 隔离好的硅化硅肖特基二极管
    • US07485941B2
    • 2009-02-03
    • US11255338
    • 2005-10-21
    • Sharon LevinShye ShapiraIra NaotRobert J. StrainYossi Netzer
    • Sharon LevinShye ShapiraIra NaotRobert J. StrainYossi Netzer
    • H01L29/47
    • H01L29/872H01L27/0629H01L27/0814H01L27/095
    • A Schottky diode is formed on an isolated well (e.g., a P-well formed in a buried N-well), and utilizes cobalt silicide (CoSi2) structures respectively formed on heavily doped and lightly doped regions of the isolated well to provide the Schottky barrier and backside (ohmic) contact structures of the Schottky diode. The surrounding buried N-well is coupled to a bias voltage. The Schottky barrier and backside contact structures are separated by isolation structures formed using polycrystalline silicon, which is used to form the gate structure of CMOS FETs, in order to minimize forward resistance. Heavily doped drain (HDD) diffusions and lightly doped drain (LDD) diffusions, which are used to form source and drain diffusions of the FET, are utilized to form a suitable contact diffusion under the backside contact silicide.
    • 肖特基二极管形成在隔离阱(例如,在掩埋的N阱中形成的P阱)中,并且利用分离形成在隔离阱的重掺杂和轻掺杂区域上的硅化钴(CoSi 2)结构,以提供肖特基 屏蔽和背面(欧姆)接触结构。 周围埋置的N阱耦合到偏置电压。 肖特基势垒和背面接触结构由使用多晶硅形成的隔离结构分开,其用于形成CMOS FET的栅极结构,以便使正向电阻最小化。 用于形成FET的源极和漏极扩散的重掺杂漏极(HDD)扩散和轻掺杂漏极(LDD)扩散被用于在背侧接触硅化物下形成合适的接触扩散。
    • 6. 发明申请
    • Cobalt silicide schottky diode on isolated well
    • 隔离好的硅化硅肖特基二极管
    • US20060125040A1
    • 2006-06-15
    • US11255338
    • 2005-10-21
    • Sharon LevinShye ShapiraIra NaotRobert StrainYossi Netzer
    • Sharon LevinShye ShapiraIra NaotRobert StrainYossi Netzer
    • H01L31/07
    • H01L29/872H01L27/0629H01L27/0814H01L27/095
    • A Schottky diode is formed on an isolated well (e.g., a P-well formed in a buried N-well), and utilizes cobalt silicide (CoSi2) structures respectively formed on heavily doped and lightly doped regions of the isolated well to provide the Schottky barrier and backside (ohmic) contact structures of the Schottky diode. The surrounding buried N-well is coupled to a bias voltage. The Schottky barrier and backside contact structures are separated by isolation structures formed using polycrystalline silicon, which is used to form the gate structure of CMOS FETs, in order to minimize forward resistance. Heavily doped drain (HDD) diffusions and lightly doped drain (LDD) diffusions, which are used to form source and drain diffusions of the FET, are utilized to form a suitable contact diffusion under the backside contact silicide.
    • 肖特基二极管形成在隔离的阱(例如,在掩埋的N阱中形成的P阱)中,并且使用分别在重掺杂和轻掺杂区域上形成的硅化钴(CoSi 2 N 2)结构 的隔离阱以提供肖特基势垒和肖特基二极管的背面(欧姆)接触结构。 周围埋置的N阱耦合到偏置电压。 肖特基势垒和背面接触结构由使用多晶硅形成的隔离结构分开,其用于形成CMOS FET的栅极结构,以便使正向电阻最小化。 用于形成FET的源极和漏极扩散的重掺杂漏极(HDD)扩散和轻掺杂漏极(LDD)扩散被用于在背侧接触硅化物下形成合适的接触扩散。
    • 7. 发明申请
    • Gate defined schottky diode
    • 门限肖特基二极管
    • US20060125019A1
    • 2006-06-15
    • US11255627
    • 2005-10-21
    • Sharon LevinShye ShapiraIra NaotRobert StrainYossi Netzer
    • Sharon LevinShye ShapiraIra NaotRobert StrainYossi Netzer
    • H01L29/94H01L27/095H01L29/76
    • H01L29/872H01L27/0814H01L27/095
    • A Schottky diode exhibiting low series resistance is efficiently fabricated using a substantially standard CMOS process flow by forming the Schottky diode using substantially the same structures and processes that are used to form a field effect transistor (FET) of a CMOS IC device. Polycrystalline silicon, which is used to form the gate structure of the FET, is utilized to form an isolation structure between the Schottky barrier and backside structure of the Schottky diode. Silicide (e.g., cobalt silicide (CoSi2)) structures, which are utilized to form source and drain metal-to-silicon contacts in the FET, are used to form the Schottky barrier and backside Ohmic contact of the Schottky diode. Heavily doped drain (HDD) diffusions and lightly doped drain (LDD) diffusions, which are used to form source and drain diffusions of the FET, are utilized to form a suitable contact diffusion under the backside contact silicide.
    • 使用与用于形成CMOS IC器件的场效应晶体管(FET)的基本相同的结构和工艺,通过形成肖特基二极管,通过使用基本上标准的CMOS工艺流程,有效地制造了具有低串联电阻的肖特基二极管。 用于形成FET的栅极结构的多晶硅用于在肖特基势垒和肖特基二极管的背侧结构之间形成隔离结构。 用于在FET中形成源极和漏极金属对硅触点的硅化物(例如,硅化钴(CoSi 2 N))结构用于形成肖特基势垒和背面欧姆接触 肖特基二极管。 用于形成FET的源极和漏极扩散的重掺杂漏极(HDD)扩散和轻掺杂漏极(LDD)扩散被用于在背侧接触硅化物下形成合适的接触扩散。
    • 9. 发明申请
    • Electrostatic Discharge Protection Device For Radio Frequency Applications Based On An Isolated L-NPN Device
    • 基于隔离L-NPN器件的射频应用静电放电保护装置
    • US20070223162A1
    • 2007-09-27
    • US11277607
    • 2006-03-27
    • Ira NaotYaron Blecher
    • Ira NaotYaron Blecher
    • H02H3/20H02H9/04
    • H01L27/0259
    • A lateral bipolar transistor is used to protect a passive radio frequency (RF) microelectronic circuit during electrostatic discharge (ESD) events. The microelectronic circuit receives a high frequency differential input signal across first and second pads. The lateral bipolar transistor includes an n-type emitter coupled to the first pad and an n-type collector coupled to the second pad. The emitter and collector are located in a p-well, which forms the base of the transistor. The p-well is located in an isolating n-well, which in turn, is located in a p-type substrate. The n-well is coupled to receive the VDD supply voltage and the p-substrate is coupled to a VSS reference voltage. A dielectric region can be located between the emitter and collector (in the p-well).
    • 横向双极晶体管用于在静电放电(ESD)事件期间保护无源射频(RF)微电子电路。 微电子电路在第一和第二焊盘上接收高频差分输入信号。 横向双极晶体管包括耦合到第一焊盘的n型发射极和耦合到第二焊盘的n型集电极。 发射极和集电极位于p阱中,形成晶体管的基极。 p阱位于隔离的n阱中,其又位于p型衬底中。 n阱被耦合以接收V DD电源电压,p衬底被耦合到V SS参考电压。 电介质区域可以位于发射极和集电极之间(在p阱中)。