会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method to adjust multilayer film stress induced deformation of optics
    • 调整多层膜应力诱导光学变形的方法
    • US6134049A
    • 2000-10-17
    • US160264
    • 1998-09-25
    • Eberhard A. SpillerPaul B. MirkarimiClaude MontcalmSasa BajtJames A. Folta
    • Eberhard A. SpillerPaul B. MirkarimiClaude MontcalmSasa BajtJames A. Folta
    • B32B7/02B32B15/04G02B1/10G02B5/08G02B5/26G02B5/28G03F1/22G03F7/20F21V9/04
    • G03F7/70958G02B5/0875G02B5/0891G02B5/26G03F1/22G21K1/062
    • Stress compensating systems that reduces/compensates stress in a multilayer without loss in reflectivity, while reducing total film thickness compared to the earlier buffer-layer approach. The stress free multilayer systems contain multilayer systems with two different material combinations of opposite stress, where both systems give good reflectivity at the design wavelengths. The main advantage of the multilayer system design is that stress reduction does not require the deposition of any additional layers, as in the buffer layer approach. If the optical performance of the two systems at the design wavelength differ, the system with the poorer performance is deposited first, and then the system with better performance last, thus forming the top of the multilayer system. The components for the stress reducing layer are chosen among materials that have opposite stress to that of the preferred multilayer reflecting stack and simultaneously have optical constants that allow one to get good reflectivity at the design wavelength. For a wavelength of 13.4 nm, the wavelength presently used for extreme ultraviolet (EUV) lithography, Si and Be have practically the same optical constants, but the Mo/Si multilayer has opposite stress than the Mo/Be multilayer. Multilayer systems of these materials have practically identical reflectivity curves. For example, stress free multilayers can be formed on a substrate using Mo/Be multilayers in the bottom of the stack and Mo/Si multilayers at the top of the stack, with the switch-over point selected to obtain zero stress. In this multilayer system, the switch-over point is at about the half point of the total thickness of the stack, and for the Mo/Be--Mo/Si system, there may be 25 deposition periods Mo/Be to 20 deposition periods Mo/Si.
    • 应力补偿系统减少/补偿多层中的应力,而不损失反射率,同时减少与较早的缓冲层方法相比的总膜厚度。 无应力的多层系统包含具有两种不同材料组合的相反应力的多层系统,其中两个系统在设计波长处给出良好的反射率。 多层系统设计的主要优点是减压不需要任何附加层的沉积,如缓冲层方法一样。 如果两个系统的设计波长的光学性能不同,首先沉积性能较差的系统,然后再次具有更好性能的系统,从而形成多层系统的顶部。 应力降低层的组件选自具有与优选的多层反射叠层相反的应力的材料,并且同时具有允许在设计波长处获得良好的反射率的光学常数。 对于13.4nm的波长,目前用于极紫外(EUV)光刻的波长Si和Be实际上具有相同的光学常数,但Mo / Si多层具有与Mo / Be多层相反的应力。 这些材料的多层系统具有几乎相同的反射曲线。 例如,可以在堆叠底部使用Mo / Be多层和堆叠顶部的Mo / Si多层在衬底上形成无应力多层,选择切换点以获得零应力。 在该多层体系中,切换点为堆叠总厚度的大约一半,对于Mo / Be-Mo / Si系统,可能存在25个沉积周期Mo / Be至20个沉积周期Mo / Si。
    • 5. 发明授权
    • Conformal chemically resistant coatings for microflow devices
    • 用于微流量装置的保形的耐化学性涂层
    • US06562404B1
    • 2003-05-13
    • US09645826
    • 2000-08-25
    • James A. FoltaMark Zdeblick
    • James A. FoltaMark Zdeblick
    • C23C1634
    • C23C16/045C23C16/345
    • A process for coating the inside surfaces of silicon microflow devices, such as electrophoresis microchannels, with a low-stress, conformal (uniform) silicon nitride film which has the ability to uniformly coat deeply-recessed cavities with, for example, aspect ratios of up to 40:1 or higher. The silicon nitride coating allows extended exposure to caustic solutions. The coating enables a microflow device fabricated in silicon to be resistant to all classes of chemicals: acids, bases, and solvents. The process involves low-pressure (vacuum) chemical vapor deposition. The ultra-low-stress silicon nitride deposition process allows 1-2 &mgr;m thick films without cracks, and so enables extended chemical protection of a silicon microflow device against caustics for up to 1 year. Tests have demonstrated the resistance of the films to caustic solutions at both ambient and elevated temperatures to 65° C.
    • 用低应力,共形(均匀)氮化硅膜涂覆诸如电泳微通道的硅微流装置的内表面的方法,其具有均匀地涂覆深凹陷空腔的能力,例如具有例如上升的纵横比 至40:1或更高。 氮化硅涂层允许延长暴露于苛性碱溶液。 该涂层使得在硅中制造的微流量装置能够抵抗所有类别的化学品:酸,碱和溶剂。 该方法涉及低压(真空)化学气相沉积。 超低应力氮化硅沉积工艺允许1-2毫米厚的薄膜没有裂缝,因此可以延长硅微流量装置的化学保护,防止焦烧液长达1年。 测试已经证明了膜在环境温度和高温至65℃时对苛性碱溶液的耐受性。
    • 6. 发明授权
    • Method and system for producing sputtered thin films with sub-angstrom thickness uniformity or custom thickness gradients
    • 用于制造具有亚埃厚度均匀性或定制厚度梯度的溅射薄膜的方法和系统
    • US06524449B1
    • 2003-02-25
    • US09454673
    • 1999-12-03
    • James A. FoltaClaude MontcalmChristopher Walton
    • James A. FoltaClaude MontcalmChristopher Walton
    • C23C1600
    • C23C14/54C23C14/543C23C14/545G02B1/10
    • A method and system for producing a thin film with highly uniform (or highly accurate custom graded) thickness on a flat or graded substrate (such as concave or convex optics), by sweeping the substrate across a vapor deposition source with controlled (and generally, time-varying) velocity. In preferred embodiments, the method includes the steps of measuring the source flux distribution (using a test piece that is held stationary while exposed to the source), calculating a set of predicted film thickness profiles, each film thickness profile assuming the measured flux distribution and a different one of a set of sweep velocity modulation recipes, and determining from the predicted film thickness profiles a sweep velocity modulation recipe which is adequate to achieve a predetermined thickness profile. Aspects of the invention include a practical method of accurately measuring source flux distribution, and a computer-implemented method employing a graphical user interface to facilitate convenient selection of an optimal or nearly optimal sweep velocity modulation recipe to achieve a desired thickness profile on a substrate. Preferably, the computer implements an algorithm in which many sweep velocity function parameters (for example, the speed at which each substrate spins about its center as it sweeps across the source) can be varied or set to zero.
    • 通过将衬底穿过气相沉积源(通常在其上,通常用于生产具有高度均匀(或高度准确的定制分级)厚度的薄膜的方法和系统,该平板或渐变衬底(例如凹形或凸形光学器件) 时变)速度。 在优选实施例中,该方法包括以下步骤:测量源通量分布(使用在暴露于源时保持静止的测试件),计算一组预测的膜厚度分布,每个薄膜厚度分布假设测量的磁通分布;以及 一组扫描速度调制配方中的不同的一个,并且从预测的膜厚度分布确定足以实现预定厚度分布的扫描速度调制配方。 本发明的方面包括精确测量源通量分布的实用方法,以及采用图形用户界面的计算机实现的方法,以促进方便地选择最佳或近似最佳的扫描速度调制配方以在衬底上实现期望的厚度分布。 优选地,计算机实现了一种算法,其中许多扫描速度函数参数(例如,每个基板绕其中心旋转,当其扫过源时的速度)可以被改变或设置为零。
    • 7. 发明授权
    • Dynamic mask for producing uniform or graded-thickness thin films
    • 用于生产均匀或渐变厚度薄膜的动态掩模
    • US07062348B1
    • 2006-06-13
    • US09615281
    • 2000-07-13
    • James A. Folta
    • James A. Folta
    • G06F19/00
    • C23C14/044
    • A method for producing single layer or multilayer films with high thickness uniformity or thickness gradients. The method utilizes a moving mask which blocks some of the flux from a sputter target or evaporation source before it deposits on a substrate. The velocity and position of the mask is computer controlled to precisely tailor the film thickness distribution. The method is applicable to any type of vapor deposition system, but is particularly useful for ion beam sputter deposition and evaporation deposition; and enables a high degree of uniformity for ion beam deposition, even for near-normal incidence of deposition species, which may be critical for producing low-defect multilayer coatings, such as required for masks for extreme ultraviolet lithography (EUVL). The mask can have a variety of shapes, from a simple solid paddle shape to a larger mask with a shaped hole through which the flux passes. The motion of the mask can be linear or rotational, and the mask can be moved to make single or multiple passes in front of the substrate per layer, and can pass completely or partially across the substrate.
    • 一种生产具有高厚度均匀性或厚度梯度的单层或多层膜的方法。 该方法利用移动掩模,其在溅射靶或蒸发源沉积在衬底上之前阻挡来自溅射靶或蒸发源的一些焊剂。 面罩的速度和位置由计算机控制,以精确定制薄膜厚度分布。 该方法适用于任何类型的气相沉积系统,但对于离子束溅射沉积和蒸发沉积特别有用; 并且即使对于沉积物质的近似法线入射也能够实现离子束沉积的高度均匀性,这对于生产低缺陷多层涂层(例如用于极紫外光刻(EUVL)的掩模所需)可能是至关重要的。 面具可以具有各种形状,从简单的固体桨形状到具有通过其的通孔穿过的成形孔的较大掩模。 掩模的运动可以是线性的或旋转的,并且掩模可以被移动以在每层的基板的前面进行单次或多次通过,并且可以完全或部分地穿过基板。
    • 9. 发明授权
    • Zero dead volume tube to surface seal
    • 零死体管到表面密封
    • US6056331A
    • 2000-05-02
    • US711841
    • 1996-09-12
    • William J. BenettJames A. Folta
    • William J. BenettJames A. Folta
    • F16L19/02F16L21/04
    • F16L19/02Y10S285/911Y10T29/49872
    • A method and apparatus for connecting a tube to a surface that creates a dead volume seal. The apparatus is composed of three components, a body, a ferrule, and a threaded fitting. The ferrule is compressed onto a tube and a seal is formed between the tube and a device retained in the body by threading the fitting into the body which provides pressure that seals the face of the ferrule to a mating surface on the device. This seal can be used at elevated temperatures depending on the materials used. While the invention has been developed for use with micro-machined silicon wafers used in Capillary Gas Chromatograph (GC), it can be utilized anywhere for making a gas or fluid face seal to the surface of a device that has near zero dead volume.
    • 一种将管连接到产生死体积密封的表面的方法和装置。 该装置由三个部件组成,一个主体,一个套圈和一个螺纹接头。 套圈被压缩到管上,并且通过将配件穿入主体中而将管和保持在主体中的装置之间形成密封,该压力提供将套圈的表面密封到装置上的配合表面的压力。 根据所使用的材料,该密封可以在高温下使用。 虽然本发明已被开发用于毛细管气相色谱(GC)中使用的微加工硅晶片,但是其可用于在具有接近零死体积的器件的表面形成气体或流体表面密封件的任何地方。
    • 10. 发明授权
    • Miniaturized flow injection analysis system
    • 小型化流动注射分析系统
    • US5644395A
    • 1997-07-01
    • US502795
    • 1995-07-14
    • James A. Folta
    • James A. Folta
    • B01J19/00G01N35/00G01N35/08G01N1/10G01N21/01
    • G01N35/085B01J19/0093G01N2035/00237
    • A chemical analysis technique known as flow injection analysis, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38.times.25.times.3 mm, but can be designed for gas analysis and be substantially smaller in construction.
    • 称为流动注射分析的化学分析技术,其中少量的化学试剂和样品在毛细管流动系统内混合和反应,并且通过光学,电化学或其它方式检测反应产物。 使用微电子工业常用的微细加工技术制造了流动注射分析系统的高度小型化版本。 微流系统使用通过在硅或玻璃晶片中蚀刻微通道形成的流动毛细管,然后与另一个晶片(直接结合到微流通道的市售微型阀)结合,以及在毛细管出口附近形成的光吸收检测器单元, 并用光纤收集。 微流量系统主要用于液体分析,目前测量尺寸为38x25x3 mm,但可用于气体分析,结构尺寸较小。