会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • High impedance plasma ion implantation method and apparatus
    • 高阻抗等离子体离子注入方法及装置
    • US5330800A
    • 1994-07-19
    • US971433
    • 1992-11-04
    • Robert W. SchumacherJesse N. MatossianDan M. Goebel
    • Robert W. SchumacherJesse N. MatossianDan M. Goebel
    • C23C14/48H01J37/317H01J37/32H01L21/265H01L21/324B05D3/06
    • H01J37/32412
    • A high dose rate, high impedance plasma ion implantation method and apparatus to apply high voltage pulses to a target cathode within an ionization chamber to both sustain a plasma in the gas surrounding the target, and to implant ions from the plasma into the target during at least a portion of each pulse. Operating at voltages in excess of 50 kV that are too high for the reliable formation of a conventional glow discharge, the plasma is instead sustained through a beam-plasma instability interaction between secondary electrons emitted from the target and a background pulsed plasma. The voltage pulses are at least about 50 kV, and preferably 100 kV or more. Pulse durations are preferably less than 8 microseconds, with a frequency in the 50-1,000 Hz range. The preferred gas pressure range is 1.times.10.sup.-4 -1.times.10.sup.-3 Torr; auxiliary electrodes can be used at the lower pressures to provide sufficient seed electrons for initiating a plasma, which is sustained by the beam-plasma instability interaction.
    • 一种高剂量率,高阻抗等离子体离子注入方法和装置,用于向电离室内的目标阴极施加高电压脉冲以维持目标周围的气体中的等离子体,并且在时间段期间将离子从等离子体注入靶中 每个脉冲的最小部分。 在超过50kV的电压下工作,对于可靠地形成常规的辉光放电来说太高,等离子体被维持通过从靶发射的二次电子和背景脉冲等离子体之间的束 - 等离子体不稳定性相互作用。 电压脉冲为至少约50kV,优选为100kV以上。 脉冲持续时间优选小于8微秒,频率在50-1,000Hz范围内。 优选的气体压力范围是1×10-4-1×10-3乇; 可以在较低的压力下使用辅助电极以提供充足的种子电子来引发等离子体,其由束 - 等离子体不稳定性相互作用所持续。
    • 2. 发明授权
    • High impedance plasma ion implantation apparatus
    • 高阻抗等离子体离子注入装置
    • US5607509A
    • 1997-03-04
    • US635527
    • 1996-04-22
    • Robert W. SchumacherJesse N. MatossianDan M. Goebel
    • Robert W. SchumacherJesse N. MatossianDan M. Goebel
    • C23C14/48H01J37/317H01J37/32H01L21/265H01L21/324C23C16/00
    • H01J37/32412
    • A high dose rate, high impedance plasma ion implantation method and apparatus to apply high voltage pulses to a target cathode within an ionization chamber to both sustain a plasma in the gas surrounding the target, and to implant ions from the plasma into the target during at least a portion of each pulse. Operating at voltages in excess of 50 kV that are too high for the reliable formation of a conventional glow discharge, the plasma is instead sustained through a beam-plasma instability interaction between secondary electrons emitted from the target and a background pulsed plasma. The voltage pulses are at least about 50 kV, and preferably 100 kV or more. Pulse durations are preferably less than 8 microseconds, with a frequency in the 50-1,000 Hz range. The preferred gas pressure range is 1.times.10.sup.-4 -1.times.10.sup.-3 Torr; auxiliary electrodes can be used at the lower pressures to provide sufficient seed electrons for initiating a plasma, which is sustained by the beam-plasma instability interaction.
    • 一种高剂量率,高阻抗等离子体离子注入方法和装置,用于向电离室内的目标阴极施加高电压脉冲以维持目标周围的气体中的等离子体,并且在时间段期间将离子从等离子体注入靶中 每个脉冲的最小部分。 在超过50kV的电压下工作,对于可靠地形成常规的辉光放电来说太高,等离子体被维持通过从靶发射的二次电子和背景脉冲等离子体之间的束 - 等离子体不稳定性相互作用。 电压脉冲为至少约50kV,优选为100kV以上。 脉冲持续时间优选小于8微秒,频率在50-1,000Hz范围内。 优选的气体压力范围是1×10-4-1×10-3乇; 可以在较低的压力下使用辅助电极以提供充足的种子电子来引发等离子体,其由束 - 等离子体不稳定性相互作用所持续。
    • 3. 发明授权
    • Plasma source arrangement for ion implantation
    • 用于离子注入的等离子体源装置
    • US5218179A
    • 1993-06-08
    • US749013
    • 1991-08-23
    • Jesse N. MatossianDan M. Goebel
    • Jesse N. MatossianDan M. Goebel
    • C23C14/48H01J37/32
    • H01J37/32688C23C14/48H01J37/32412H01J37/32706
    • An object (14) which is to be implanted with ions is enclosed in a container (12). A plasma (44) is generated in a chamber (26) which is separate from, and opens into the container (12). The plasma diffuses from the chamber (26) into the container (12) to surround the object (14) with uniform density. High voltage negative pulses are applied to the object (14), causing the ions to be accelerated from the plasma (44) toward, and be implanted into, the object (14). Line-of-sight communication between a plasma generation source (30) located in the chamber (26) and the object (14) is blocked, thereby eliminating undesirable effects including heating of the object (14) by the source (30) and transfer of thermally discharged material from the source (30) to the object (14). Two or more chambers (26,34) may be provided for generating independent plasmas (44,46) of different ion species which diffuse into and uniformly mix in the container (12). The attributes of the different plasmas (44,46) may be individually selected and controlled in the respective chambers (26,34).
    • 要注入离子的物体(14)封闭在容器(12)中。 在与容器(12)分离并向容器(12)开口的室(26)中产生等离子体(44)。 等离子体从室(26)扩散到容器(12)中以围绕物体(14)以均匀的密度扩散。 将高电压负脉冲施加到物体(14)上,使离子从等离子体(44)加速朝向物体(14)并被植入物体(14)。 位于室(26)中的等离子体产生源(30)和物体(14)之间的视线通信被阻挡,从而消除不期望的影响,包括通过源(30)加热物体(14)并传送 从所述源(30)到所述物体(14)的热排出材料。 可以提供两个或更多个腔室(26,34),用于产生不同离子种类的独立等离子体(44,46),这些等离子体扩散到容器(12)中并均匀地混合在容器(12)中。 不同等离子体(44,46)的属性可以在相应的腔室(26,34)中单独选择和控制。
    • 4. 发明授权
    • Method of implanting ions from a plasma into an object
    • 将离子从等离子体注入到物体中的方法
    • US5296272A
    • 1994-03-22
    • US8273
    • 1993-01-25
    • Jesse N. MatossianDan M. Goebel
    • Jesse N. MatossianDan M. Goebel
    • C23C14/48H01J37/32B05D3/06B05D3/02
    • H01J37/32688C23C14/48H01J37/32412H01J37/32706
    • An object which is to be implemented with ions is enclosed in a container. A plasma is generated in a chamber which is separate from, and opens into the container. The plasma diffuses from the chamber into the container to surround the object with uniform density. High voltage negative pulses are applied to the object, causing the ions to be accelerated from the plasma toward, and be implanted into, the object. Line-of-sight communication between a plasma generation source located in the chamber and the object is blocked, thereby eliminating undesirable effects including heating of the object by the source and transfer of thermally discharged material from the source to the object. Two or more chambers may be provided for generating independent plasmas of different ion species which diffuse into and uniformly mix in the container. The attributes of the different plasmas may be individually selected and controlled in the respective chambers.
    • 要用离子实施的物体被封闭在容器中。 在与容器分离并向容器开放的室中产生等离子体。 等离子体从腔室扩散到容器中以围绕物体均匀密度。 将高电压负脉冲施加到物体上,使离子从等离子体加速并被注入到物体中。 位于室内的等离子体发生源与物体之间的视线通信被阻挡,从而消除不期望的影响,包括由源引起的物体的加热和将热排出的材料从源传送到物体。 可以提供两个或更多个室以产生扩散到容器中并均匀混合在容器中的不同离子种类的独立等离子体。 不同等离子体的属性可以在相应的室中单独选择和控制。
    • 7. 发明授权
    • Surface preparation and deposition method for titanium nitride onto
carbon-containing materials
    • 氮化钛在含碳材料上的表面处理和沉积方法
    • US5487922A
    • 1996-01-30
    • US259371
    • 1994-06-14
    • Simon K. NiehJesse N. MatossianFrans G. KrajenbrinkRobert W. Schumacher
    • Simon K. NiehJesse N. MatossianFrans G. KrajenbrinkRobert W. Schumacher
    • C23C14/02C23C14/06C23C14/34B05D3/06C23C14/00C23F1/00
    • C23C14/022C23C14/0641
    • Wear-resistant titanium nitride coatings onto cast iron and other carbon-containing materials is enhanced by means of a new surface preparation and deposition process. The conventional pre-deposition surface cleaning by Ar.sup.+ ion bombardment is replaced by a hydrogen-ion bombardment process which cleans the substrate surface by chemical reaction with minimal sputtering and simultaneously removes graphite present on the cast iron surface. Removal of the graphite significantly improves the wear resistance of titanium nitride, since the presence of graphite causes initiation of wear at those sites. Hydrogen ion bombardment or electron bombardment may be used to heat the substrate to a chosen temperature. Finally, titanium nitride is deposited by reactive sputtering with simultaneous bombardment of high-flux Ar.sup.+ ions from an independently generated dense plasma. The resulting titanium nitride coating on cast iron evidences superior wear properties and adhesion compared to conventional reactive evaporation deposition techniques for titanium nitride.
    • 通过新的表面处理和沉积工艺,增强了对铸铁和其他含碳材料的耐磨氮化钛涂层。 通过Ar +离子轰击的常规预沉积表面清洁被氢离子轰击过程所代替,氢离子轰击过程通过化学反应以最小的溅射清洗基底表面,同时去除铸铁表面上存在的石墨。 由于石墨的存在引起了这些部位的磨损,因此去除石墨显着提高了氮化钛的耐磨性。 可以使用氢离子轰击或电子轰击将基底加热到所选择的温度。 最后,通过反应溅射沉积氮化钛,同时从独立产生的致密等离子体轰击高通量Ar +离子。 与用于氮化钛的常规反应蒸发沉积技术相比,所得到的铸铁上的氮化钛涂层证明了优异的耐磨性和粘附性。
    • 10. 发明授权
    • Nondestructive determination of plasma processing treatment
characteristics
    • 无损检测等离子体处理处理特性
    • US5455061A
    • 1995-10-03
    • US372793
    • 1994-12-23
    • Jesse N. MatossianJohn J. Vajo
    • Jesse N. MatossianJohn J. Vajo
    • G01N21/59C23C14/00C23C14/22C23C14/48C23C14/54G01N27/04B05D3/06C23C2/00
    • C23C14/54C23C14/22C23C14/48
    • Plasma processing treatment characteristics of an object are determined nondestructively, prior to plasma processing the object, by placing an indicator layer over at least a portion of the plasma processing surface of the object, so as to generally conform to the shape of the surface. An electrically conductive grid is placed over the indicator layer, and made electrically common with the object. The indicator layer is implanted through the conductive grid, and changes properties responsive to the plasma processing treatment. The implanted indicator layer is thereafter analyzed to determine the treatment characteristics of the indicator layer. Plasma processing spatial distribution and total dosage are determined nondestructively from this information and used to establish the plasma processing program for the object and adjust the plasma processing apparatus as needed.
    • 通过在对象的等离子体处理表面的至少一部分上设置指示层,以等于对该物体的形状进行等离子体处理,非物理地确定物体的等离子体处理处理特性,从而大体上符合表面的形状。 导电栅格放置在指示层上方,并与物体电气共用。 指示层通过导电栅格植入,并且响应于等离子体处理处理而改变特性。 此后分析植入的指示剂层以确定指示剂层的处理特性。 从该信息非破坏性地确定等离子体处理空间分布和总剂量,并用于建立对象的等离子体处理程序,并根据需要调整等离子体处理装置。