会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Systems and methods for enhanced quantum key formation using an actively compensated QKD system
    • 使用积极补偿的QKD系统增强量子密钥形成的系统和方法
    • US07853020B2
    • 2010-12-14
    • US11901773
    • 2007-09-19
    • A. Craig BealMichael J. LagasseAudrius Berzanskis
    • A. Craig BealMichael J. LagasseAudrius Berzanskis
    • H04L9/08
    • H04L9/0858
    • Systems and methods for enhanced quantum key distribution (QKD) using an actively compensated QKD system. The method includes exchanging quantum signals between first and second QKD stations and measuring the quantum signal error. An error signal SE representative of the system visibility error is then generated. An error-signal threshold STH that defines a system visibility error limit is then selected. Those qubits measured with the condition SE>STH are called “above-threshold” qubits, while those qubits measured with the condition SE≦STH are called “below-threshold” qubits. Only below-threshold qubits are stored and used to form the final quantum key. This is accomplished by sending a blanking signal SB to the memory unit where the qubits are stored. The blanking signal prevents above-threshold qubits from being stored therein. The raw quantum key so formed has few errors and thus forms a longer final quantum key for a given number of exchanged quantum signals.
    • 使用积极补偿的QKD系统来增强量子密钥分配(QKD)的系统和方法。 该方法包括在第一和第二QKD站之间交换量子信号并测量量子信号误差。 然后产生代表系统可见性错误的错误信号SE。 然后选择定义系统可见性错误极限的误差信号阈值STH。 以条件SE> STH测量的量子位称为“高于阈值”量子位,而用条件SE≦̸ STH测量的量子位称为“低于阈值”量子位。 只有低于阈值的量子位被存储并用于形成最终量子密钥。 这通过将消隐信号SB发送到存储量子位的存储器单元来实现。 消隐信号防止存储高于阈值的量子位。 如此形成的原始量子密钥具有很少的误差,因此对于给定数量的交换量子信号形成更长的最终量子密钥。
    • 3. 发明申请
    • Systems and methods for enhanced quantum key formation using an actively compensated QKD system
    • 使用积极补偿的QKD系统增强量子密钥形成的系统和方法
    • US20090074192A1
    • 2009-03-19
    • US11901773
    • 2007-09-19
    • A. Craig BealMichael J. LagasseAudrius Berzanskis
    • A. Craig BealMichael J. LagasseAudrius Berzanskis
    • H04L9/08
    • H04L9/0858
    • Systems and methods for enhanced quantum key distribution (QKD) using an actively compensated QKD system. The method includes exchanging quantum signals between first and second QKD stations and measuring the quantum signal error. An error signal SE representative of the system visibility error is then generated. An error-signal threshold STH that defines a system visibility error limit is then selected. Those qubits measured with the condition SE>STH are called “above-threshold” qubits, while those qubits measured with the condition SE≦STH are called “below-threshold” qubits. Only below-threshold qubits are stored and used to form the final quantum key. This is accomplished by sending a blanking signal SB to the memory unit where the qubits are stored. The blanking signal prevents above-threshold qubits from being stored therein. The raw quantum key so formed has few errors and thus forms a longer final quantum key for a given number of exchanged quantum signals.
    • 使用积极补偿的QKD系统来增强量子密钥分配(QKD)的系统和方法。 该方法包括在第一和第二QKD站之间交换量子信号并测量量子信号误差。 然后产生代表系统可见性错误的错误信号SE。 然后选择定义系统可见性错误极限的误差信号阈值STH。 用条件SE> STH测量的量子位称为“高于阈值”量子位,而用条件SE <= STH测量的量子位称为“低于阈值”量子位。 只有低于阈值的量子位被存储并用于形成最终量子密钥。 这通过将消隐信号SB发送到存储量子位的存储器单元来实现。 消隐信号防止存储高于阈值的量子位。 如此形成的原始量子密钥具有很少的误差,因此对于给定数量的交换量子信号形成更长的最终量子密钥。
    • 4. 发明申请
    • Fast bit-error rate calculation mode for QKD systems
    • QKD系统的快速误码率计算模式
    • US20100241912A1
    • 2010-09-23
    • US11397772
    • 2006-04-04
    • Brandon KwokA. Craig BealAudrius BerzanskisWensheng Sun
    • Brandon KwokA. Craig BealAudrius BerzanskisWensheng Sun
    • G06F11/00
    • H04L9/0858
    • A fast bit-error rate (F-BER) calculation mode for a QKD system is disclosed, wherein the method includes establishing versions of a sifted key in respective sifted-bits (SB) buffers in respective QKD stations (Alice and Bob). The method also includes sending Alice's version of the sifted key to Bob, and Bob performing a comparison of the two sifted key versions. The number of bit errors between the two sifted key versions relative to the length of the sifted key yields the F-BER. The F-BER is calculated much more quickly than the conventional BER calculation (“N-BER”), which involves performing a relatively complex error-correction algorithm. The F-BER calculation mode is particularly useful in quickly setting up and/or calibrating a QKD system, and can be repeated quickly to provide updated BER measurements after each QKD system adjustment.
    • 公开了一种用于QKD系统的快速误码率(F-BER)计算模式,其中该方法包括在相应的QKD站(Alice和Bob)中的相应的筛选位(SB)缓冲器中建立筛选密钥的版本。 该方法还包括将筛选密钥的Alice版本发送给Bob,Bob执行两个筛选密钥版本的比较。 两个筛选密钥版本之间的相对于筛选密钥长度的位错误的数量产生了F-BER。 比传统的BER计算(“N-BER”)更快地计算出了F-BER,这涉及到执行相对复杂的纠错算法。 F-BER计算模式在快速设置和/或校准QKD系统中特别有用,并且可以在每个QKD系统调整后快速重复以提供更新的BER测量。
    • 7. 发明申请
    • Medic voice data system
    • 医疗语音数据系统
    • US20110103597A1
    • 2011-05-05
    • US12798974
    • 2010-04-15
    • Audrius Berzanskis
    • Audrius Berzanskis
    • G10L21/06H04R29/00H04R3/00H04B7/00H03B29/00G06K9/00
    • G06F19/3418G06F19/00G10L15/26G16H10/60
    • A medical voice data system includes a hand-held recording device, an electronic information carrier (EIC), and a host station. The hand-held device records medical information from a user that is examining a person in an extreme environment such as battlefield or disaster area. EICs are stored within a housing interior and can be dispensed therefrom by the user. Recording electronics within the housing interior are operably connected to at least one of the EICs. A microphone is operably connected to the recording electronics to record on a EIC medical information about the injured person. The EIC is configured to be attached to and travel with the person as they are evacuated so that the recorded medical information is immediately available to medical personnel at a care center via the host station. The medical voice data system may also employ a wireless EIC. A host station is used to receive and process the recorded information and convert it to text-based medical record.
    • 医疗语音数据系统包括手持式记录装置,电子信息载体(EIC)和主机站。 手持设备记录正在检查诸如战场或灾区等极端环境中的人的用户的医疗信息。 EIC存储在壳体内部并且可以由用户从其中分配。 在壳体内部的记录电子装置可操作地连接到至少一个EIC。 麦克风可操作地连接到记录电子装置,以记录关于受伤者的EIC医疗信息。 EIC配置为在人员撤离时与人员连接并行进,以便通过主机站立即向医护人员提供所记录的医疗信息。 医疗语音数据系统也可以使用无线EIC。 主站用于接收和处理记录的信息并将其转换为基于文本的医疗记录。
    • 9. 发明授权
    • Frame synchronization method for QKD systems
    • QKD系统的帧同步方法
    • US07539314B2
    • 2009-05-26
    • US11503774
    • 2006-08-14
    • Audrius BerzanskisBrandon KwokHarry VigJonathan Young
    • Audrius BerzanskisBrandon KwokHarry VigJonathan Young
    • H04L9/00H04L9/08
    • H04L9/0852H04L9/12
    • Systems and methods for exchanging and processing encoded quantum signals in quantum key distribution (QKD) systems in real time. A stream of quantum signals is sent from Alice to Bob. Alice only encodes sets or “frames” of the streamed quantum signals based on receiving a “ready” message from Bob. This allows for Bob to finish processing the previous frame of data by allowing different bit buffers to fill and then be used for data processing. This approach results in gaps in between frames wherein quantum signals in the stream are sent unencoded and ignored by Bob. However, those quantum signals that are encoded for the given frame are efficiently processed, which on the whole is better than missing encoded quantum signals because Bob is not ready to receive and process them.
    • 在量子密钥分配(QKD)系统中实时交换和处理编码量子信号的系统和方法。 量子信号流从爱丽丝发送到鲍勃。 基于从Bob接收到“准备”消息,爱丽丝只对流量子信号的集合或“帧”进行编码。 这允许Bob通过允许不同的位缓冲器填充然后用于数据处理来完成对前一帧数据的处理。 这种方法导致帧之间的间隙,其中流中的量子信号被未被编码并由Bob忽略。 然而,对于给定帧编码的那些量子信号被有效地处理,由于Bob没有准备好接收和处理这些量子信号,所以总体上比编码的量子信号更好。