会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Systems and methods for enhanced quantum key formation using an actively compensated QKD system
    • 使用积极补偿的QKD系统增强量子密钥形成的系统和方法
    • US07853020B2
    • 2010-12-14
    • US11901773
    • 2007-09-19
    • A. Craig BealMichael J. LagasseAudrius Berzanskis
    • A. Craig BealMichael J. LagasseAudrius Berzanskis
    • H04L9/08
    • H04L9/0858
    • Systems and methods for enhanced quantum key distribution (QKD) using an actively compensated QKD system. The method includes exchanging quantum signals between first and second QKD stations and measuring the quantum signal error. An error signal SE representative of the system visibility error is then generated. An error-signal threshold STH that defines a system visibility error limit is then selected. Those qubits measured with the condition SE>STH are called “above-threshold” qubits, while those qubits measured with the condition SE≦STH are called “below-threshold” qubits. Only below-threshold qubits are stored and used to form the final quantum key. This is accomplished by sending a blanking signal SB to the memory unit where the qubits are stored. The blanking signal prevents above-threshold qubits from being stored therein. The raw quantum key so formed has few errors and thus forms a longer final quantum key for a given number of exchanged quantum signals.
    • 使用积极补偿的QKD系统来增强量子密钥分配(QKD)的系统和方法。 该方法包括在第一和第二QKD站之间交换量子信号并测量量子信号误差。 然后产生代表系统可见性错误的错误信号SE。 然后选择定义系统可见性错误极限的误差信号阈值STH。 以条件SE> STH测量的量子位称为“高于阈值”量子位,而用条件SE≦̸ STH测量的量子位称为“低于阈值”量子位。 只有低于阈值的量子位被存储并用于形成最终量子密钥。 这通过将消隐信号SB发送到存储量子位的存储器单元来实现。 消隐信号防止存储高于阈值的量子位。 如此形成的原始量子密钥具有很少的误差,因此对于给定数量的交换量子信号形成更长的最终量子密钥。
    • 3. 发明申请
    • Systems and methods for enhanced quantum key formation using an actively compensated QKD system
    • 使用积极补偿的QKD系统增强量子密钥形成的系统和方法
    • US20090074192A1
    • 2009-03-19
    • US11901773
    • 2007-09-19
    • A. Craig BealMichael J. LagasseAudrius Berzanskis
    • A. Craig BealMichael J. LagasseAudrius Berzanskis
    • H04L9/08
    • H04L9/0858
    • Systems and methods for enhanced quantum key distribution (QKD) using an actively compensated QKD system. The method includes exchanging quantum signals between first and second QKD stations and measuring the quantum signal error. An error signal SE representative of the system visibility error is then generated. An error-signal threshold STH that defines a system visibility error limit is then selected. Those qubits measured with the condition SE>STH are called “above-threshold” qubits, while those qubits measured with the condition SE≦STH are called “below-threshold” qubits. Only below-threshold qubits are stored and used to form the final quantum key. This is accomplished by sending a blanking signal SB to the memory unit where the qubits are stored. The blanking signal prevents above-threshold qubits from being stored therein. The raw quantum key so formed has few errors and thus forms a longer final quantum key for a given number of exchanged quantum signals.
    • 使用积极补偿的QKD系统来增强量子密钥分配(QKD)的系统和方法。 该方法包括在第一和第二QKD站之间交换量子信号并测量量子信号误差。 然后产生代表系统可见性错误的错误信号SE。 然后选择定义系统可见性错误极限的误差信号阈值STH。 用条件SE> STH测量的量子位称为“高于阈值”量子位,而用条件SE <= STH测量的量子位称为“低于阈值”量子位。 只有低于阈值的量子位被存储并用于形成最终量子密钥。 这通过将消隐信号SB发送到存储量子位的存储器单元来实现。 消隐信号防止存储高于阈值的量子位。 如此形成的原始量子密钥具有很少的误差,因此对于给定数量的交换量子信号形成更长的最终量子密钥。
    • 4. 发明申请
    • Fast bit-error rate calculation mode for QKD systems
    • QKD系统的快速误码率计算模式
    • US20100241912A1
    • 2010-09-23
    • US11397772
    • 2006-04-04
    • Brandon KwokA. Craig BealAudrius BerzanskisWensheng Sun
    • Brandon KwokA. Craig BealAudrius BerzanskisWensheng Sun
    • G06F11/00
    • H04L9/0858
    • A fast bit-error rate (F-BER) calculation mode for a QKD system is disclosed, wherein the method includes establishing versions of a sifted key in respective sifted-bits (SB) buffers in respective QKD stations (Alice and Bob). The method also includes sending Alice's version of the sifted key to Bob, and Bob performing a comparison of the two sifted key versions. The number of bit errors between the two sifted key versions relative to the length of the sifted key yields the F-BER. The F-BER is calculated much more quickly than the conventional BER calculation (“N-BER”), which involves performing a relatively complex error-correction algorithm. The F-BER calculation mode is particularly useful in quickly setting up and/or calibrating a QKD system, and can be repeated quickly to provide updated BER measurements after each QKD system adjustment.
    • 公开了一种用于QKD系统的快速误码率(F-BER)计算模式,其中该方法包括在相应的QKD站(Alice和Bob)中的相应的筛选位(SB)缓冲器中建立筛选密钥的版本。 该方法还包括将筛选密钥的Alice版本发送给Bob,Bob执行两个筛选密钥版本的比较。 两个筛选密钥版本之间的相对于筛选密钥长度的位错误的数量产生了F-BER。 比传统的BER计算(“N-BER”)更快地计算出了F-BER,这涉及到执行相对复杂的纠错算法。 F-BER计算模式在快速设置和/或校准QKD系统中特别有用,并且可以在每个QKD系统调整后快速重复以提供更新的BER测量。
    • 5. 发明申请
    • Systems and methods for transmitting quantum and classical signals over an optical network
    • 通过光网络传输量子和经典信号的系统和方法
    • US20090016736A1
    • 2009-01-15
    • US11803074
    • 2007-05-11
    • A. Craig BealMichael J. LaGasse
    • A. Craig BealMichael J. LaGasse
    • H04B10/12
    • H04L9/0852
    • Systems and methods for transmitting quantum and classical signals over an optical network are disclosed, wherein the quantum signal wavelength either falls within the classical signal wavelength band, or is very close to one of the classical signal wavelengths. The system includes a deep-notch optical filter with a blocking bandwidth that includes the quantum signal wavelength but not any of the classical signal wavelengths. The deep-notch optical filtering is applied to the classical signals prior to their being multiplexed with the quantum signals to prevent noise generated by the classical signals from adversely affecting transmission of quantum signals in the transmission optical fiber. Narrow-band filtering is also applied to the quantum signals prior to their detection in order to substantially exclude spurious non-quantum-signal wavelengths that arise from non-linear effects in the optical fiber. The present invention allows for the quantum and classical signals to have wavelengths within just a few nanometers of one another, which has benefits for both classical and quantum signal transmission on a common transmission optical fiber.
    • 公开了通过光网络传输量子和经典信号的系统和方法,其中量子信号波长或者落在经典信号波长带内,或者非常接近经典信号波长之一。 该系统包括具有阻塞带宽的深陷滤波器,其包括量子信号波长但不是任何经典信号波长。 在将它们与量子信号进行多路复用之前,对经典信号进行深度光学滤波,以防止经典信号产生的噪声对传输光纤中量子信号的传输产生不利影响。 为了基本上排除由光纤中的非线性效应产生的杂散非量子信号波长,在检测之前,窄带滤波也被应用于量子信号。 本发明允许量子和经典信号彼此之间的波长在几纳米之内,这对普通传输光纤上的经典和量子信号传输都是有利的。
    • 6. 发明授权
    • Optical fiber interferometer with relaxed loop tolerance and QKD system using the same
    • 光纤干涉仪具有松弛的环路公差和QKD系统使用相同
    • US07254295B2
    • 2007-08-07
    • US11284226
    • 2005-11-21
    • Alexei TrifonovA. Craig Beal
    • Alexei TrifonovA. Craig Beal
    • G02F1/35G02B6/26G02B6/28H04L9/00G01B9/02
    • H04L9/0858G02B6/2861
    • An optical fiber interferometer (10) with relaxed loop tolerance, and a quantum key distribution (QKD) system (200) using same is disclosed. The interferometer includes two optical fiber loops (LP1 and LP2). The loops have an optical path length (OPL) difference between them. A polarization-maintaining (PM) optical fiber section (60) of length (L60) and having fast and slow optical axes (AF and AS) optically couples the two loops. The length and fast-slow axis orientation is selected to introduce a time delay (ΔT1-2) between orthogonally polarized optical pulses traveling therethrough that compensates for the OPL difference. This allows for drastically relaxed tolerances when making the loops, leading to easier and more cost-effective manufacturing of the interferometer as well as related devices such as a optical-fiber-based QKD system.
    • 公开了具有松弛环路容限的光纤干涉仪(10)和使用其的量子密钥分配(QKD)系统(200)。 干涉仪包括两个光纤回路(LP 1和LP 2)。 环路之间的光程长度(OPL)差。 长度为(L 60 C)并且具有快速和慢速光轴的偏振维持(PM)光纤部分(60),其具有快和慢光轴(A&lt; / SUB>)光耦合两个环路。 选择长度和快慢轴定向以在穿过其中的正交偏振光脉冲之间引入补偿OPL差的时间延迟(ΔT1-2-2)。 这允许制造环路时的宽松公差,导致干涉仪的更容易和更经济有效的制造以及诸如基于光纤的QKD系统之类的相关设备。
    • 7. 发明授权
    • Systems and methods for transmitting quantum and classical signals over an optical network
    • 通过光网络传输量子和经典信号的系统和方法
    • US07248695B1
    • 2007-07-24
    • US11352046
    • 2006-02-10
    • A. Craig BealMichael J. LaGasse
    • A. Craig BealMichael J. LaGasse
    • H04K1/00H04L9/00
    • H04L9/0852
    • Systems and methods for transmitting quantum and classical signals over an optical network are disclosed, wherein the quantum signal wavelength either falls within the classical signal wavelength band, or is very close to one of the classical signal wavelengths. The system includes a deep-notch optical filter with a blocking bandwidth that includes the quantum signal wavelength but not any of the classical signal wavelengths. The deep-notch optical filtering is applied to the classical signals prior to their being multiplexed with the quantum signals to prevent noise generated by the classical signals from adversely affecting transmission of quantum signals in the transmission optical fiber. Narrow-band filtering is also applied to the quantum signals prior to their detection in order to substantially exclude spurious non-quantum-signal wavelengths that arise from non-linear effects in the optical fiber. The present invention allows for the quantum and classical signals to have wavelengths within just a few nanometers of one another, which has benefits for both classical and quantum signal transmission on a common transmission optical fiber.
    • 公开了通过光网络传输量子和经典信号的系统和方法,其中量子信号波长或者落在经典信号波长带内,或者非常接近经典信号波长之一。 该系统包括具有阻塞带宽的深陷滤波器,其包括量子信号波长但不是任何经典信号波长。 在将它们与量子信号进行多路复用之前,对经典信号进行深度光学滤波,以防止经典信号产生的噪声对传输光纤中量子信号的传输产生不利影响。 为了基本上排除由光纤中的非线性效应产生的杂散非量子信号波长,在检测之前,窄带滤波也被应用于量子信号。 本发明允许量子和经典信号彼此之间的波长在几纳米之内,这对普通传输光纤上的经典和量子信号传输都是有利的。
    • 9. 发明申请
    • QKD system and method with improved signal-to-noise ratio
    • QKD系统和方法具有提高的信噪比
    • US20090185689A1
    • 2009-07-23
    • US12009457
    • 2008-01-18
    • A. Craig Beal
    • A. Craig Beal
    • H04L9/08
    • H04L9/0858
    • Systems and methods for performing quantum key distribution (QKD) that allow for an improved signal-to-noise ratio (SNR) when providing active compensation for differences that arise in the system's relative optical paths. The method includes generating at one QKD station (Alice) a train of quantum signals having a first wavelength and interspersing one or more strong control signals having a second wavelength in between the quantum signals. Only the quantum signals are modulated when the quantum and control signals travel over the first optical path at Alice. The quantum and control signals are sent to Bob, where only the quantum signals are modulated as both signal types travel over a second optical path at Bob. The control signals are directed to two different photodetectors by an optical splitter. The proportion of optical power detected by each photodetector represents the optical path difference between the first and second optical paths. This difference is then compensated for via a control signal sent to a path-length-adjusting element in one of the optical paths. The control signals provides a high SNR that allows for commercially viable QKD system that can operate with a high qubit rate and a small qubit error rate (QBER) in the face of real-world sources of noise.
    • 用于执行量子密钥分配(QKD)的系统和方法,其在为系统的相对光路中出现的差异提供主动补偿时允许改进的信噪比(SNR)。 该方法包括在一个QKD站(Alice)处生成具有第一波长的一系列量子信号,并且在量子信号之间散布一个或多个具有第二波长的强控制信号。 当量子和控制信号在Alice的第一光路上行进时,只有量子信号被调制。 量子和控制信号被发送到Bob,其中只有量子信号被调制,因为两个信号类型在Bob的第二光路上行进。 控制信号通过光分路器被引导到两个不同的光电检测器。 由每个光电检测器检测的光功率的比例表示第一和第二光路之间的光程差。 然后通过发送到光路之一中的路径长度调节元件的控制信号来补偿该差异。 控制信号提供高信噪比,允许商业上可行的QKD系统,其可以面对现实世界的噪声源,以高量子比率和小的量子误差率(QBER)运行。