会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明授权
    • Stress tunable tantalum and tantalum nitride films
    • 应力可调钽和氮化钽膜
    • US06488823B1
    • 2002-12-03
    • US09423470
    • 1999-11-04
    • Tony ChiangPeijun DingBarry L. ChinBingxi Sun
    • Tony ChiangPeijun DingBarry L. ChinBingxi Sun
    • C23C1434
    • C23C14/345C23C14/0036C23C14/0641C23C14/16C23C14/3492C23C14/358C23C14/5833H01L21/2855H01L21/76838H01L21/76841H01L21/76843H01L21/76862H01L21/76864H01L23/53233H01L23/53238H01L2924/0002H01L2924/00
    • The present disclosure pertains to our discovery that residual stress residing in a tantalum film or tantalum nitride film can be controlled (tuned) during deposition by adjusting at least two particular process variables which have counteracting effects on the residual film stress. By tuning individual film stresses within a film stack, it is possible to balance stresses within the stack. Process variables of particular interest include: power to the sputtering target process chamber pressure (i.e., the concentration of various gases and ions present in the chamber); substrate DC offset bias voltage (typically an increase in the AC applied substrate bias power); power to an ionization source (typically a coil); and temperature of the substrate upon which the film is deposited. The process chamber pressure and the substrate offset bias most significantly affect the film tensile and compressive stress components, respectively. The most advantageous tuning of a sputtered film is achieved using high density plasma sputter deposition, which provides for particular control over the ion bombardment of the depositing film surface. When the tantalum or tantalum nitride film is deposited using high density plasma sputtering, power to the ionization source can be varied for stress tuning of the film. We have been able to reduce the residual stress in tantalum or tantalum nitride films deposited using high density plasma sputtering to between about 6×10+9 dynes/cm2 and about −6×10+9 dynes/cm2 using techniques described herein.
    • 本公开涉及我们的发现,即通过调节对剩余膜应力具有抵消作用的至少两个特定工艺变量,可以在沉积期间控制(调整)驻留在钽膜或氮化钽膜中的残余应力。 通过调整薄膜叠层内的各个薄膜应力,可以平衡叠层内的应力。 特别感兴趣的过程变量包括:溅射靶处理室压力的功率(即存在于室中的各种气体和离子的浓度); 衬底DC偏移偏置电压(通常为施加衬底偏置功率的AC增加); 电源(通常为线圈); 以及沉积膜的基板的温度。 处理室压力和基板偏移偏压分别最显着地影响膜的拉伸和压应力分量。 使用高密度等离子体溅射沉积来实现溅射膜的最有利的调谐,其提供对沉积膜表面的离子轰击的特定控制。 当使用高密度等离子体溅射沉积钽或氮化钽膜时,电离源的功率可以改变以用于膜的应力调谐。 使用本文所述的技术,我们已经能够将使用高密度等离子体溅射沉积的钽或氮化钽膜中的残余应力减小到约6×10 9 + 9达因/ cm 2和约-6×10 9达因/ cm 2之间。
    • 7. 发明授权
    • Method and apparatus for forming improved metal interconnects
    • 用于形成改进的金属互连的方法和装置
    • US06287977B1
    • 2001-09-11
    • US09126890
    • 1998-07-31
    • Imran HashimTony ChiangBarry Chin
    • Imran HashimTony ChiangBarry Chin
    • H01L21302
    • H01L21/76844H01L21/76805H01L21/76814H01L21/76831H01L21/76834H01L21/76838H01L21/76877H01L23/5226H01L23/53238H01L2924/0002H01L2924/00
    • Methods of forming copper interconnects free from via-to-via leakage currents and having low resistances are disclosed. In a first aspect, a barrier layer is deposited on the first metal layer prior to copper oxide sputter-etching to prevent copper atoms from reaching the interlayer dielectric and forming via-to-via leakage current paths therein. In a second aspect, a capping dielectric barrier layer is deposited over the first metal layer prior to sputter etching. During sputter-etching, the capping dielectric barrier layer redistributes on the sidewalls of the interlayer dielectric, preventing sputter-etched copper atoms from reaching the interlayer dielectric and forming via-to-via leakage paths therein. In a third aspect, both a capping dielectric barrier layer and a barrier layer are deposited over the first metal layer prior to sputter-etching to prevent copper atoms produced during sputter-etching from reaching the interlayer dielectric and forming via-to-via leakage paths therein.
    • 公开了形成没有通孔到通孔泄漏电流并具有低电阻的铜互连的方法。 在第一方面,在铜氧化物溅射蚀刻之前,在第一金属层上沉积阻挡层,以防止铜原子到达层间电介质,并在其中形成通孔到漏电流路径。 在第二方面,在溅射蚀刻之前,在第一金属层上沉积封盖电介质阻挡层。 在溅射蚀刻期间,封盖电介质阻挡层重新分布在层间电介质的侧壁上,防止溅射蚀刻的铜原子到达层间电介质并在其中形成通孔到通孔泄漏路径。 在第三方面,在溅射蚀刻之前,在第一金属层上沉积封盖介电阻挡层和阻挡层,以防止在溅射蚀刻期间产生的铜原子到达层间电介质并形成通孔到通孔泄漏路径 其中。