会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Production Methods of Semiconductor Crystal and Semiconductor Substrate
    • 半导体晶体和半导体基板的生产方法
    • US20090155580A1
    • 2009-06-18
    • US12225389
    • 2007-04-05
    • Naoki ShibataKoji HirataShiro YamazakiKatsuhiro ImaiMakoto IwaiTakatomo SasakiYusuke MoriFumio Kawamura
    • Naoki ShibataKoji HirataShiro YamazakiKatsuhiro ImaiMakoto IwaiTakatomo SasakiYusuke MoriFumio Kawamura
    • C30B19/02B32B9/00B32B1/00
    • C30B29/403C30B9/00H01L33/0075Y10T428/265Y10T428/266
    • To provide a semiconductor substrate of high quality suitable for fabricating an electronic device or an optical device. The present invention provides a method for producing a semiconductor substrate for an electronic device or an optical device, the method including reacting nitrogen (N) with gallium (Ga), aluminum (Al), or indium (In), which are group III elements, in a flux mixture containing a plurality of metal elements selected from among alkali metals and alkaline earth metals, to thereby grow a group III nitride based compound semiconductor crystal. The group III nitride based compound semiconductor crystal is grown while the flux mixture and the group III element are mixed under stirring. At least a portion of a base substrate on which the group III nitride based compound semiconductor crystal is grown is formed of a flux-soluble material, and the flux-soluble material is dissolved in the flux mixture, at a temperature near the growth temperature of the group III nitride based compound semiconductor crystal, during the course of growth of the semiconductor crystal or after completion of growth of the semiconductor crystal.
    • 提供适合于制造电子器件或光学器件的高品质的半导体衬底。 本发明提供了一种用于制造电子器件或光学器件的半导体衬底的方法,所述方法包括使氮(N)与镓(Ga),铝(Al)或铟(In)反应,其为III族元素 在含有选自碱金属和碱土金属中的多种金属元素的助熔剂混合物中,从而生长III族氮化物类化合物半导体晶体。 在熔融混合物和III族元素在搅拌下混合,生长III族氮化物基化合物半导体晶体。 在其上生长III族氮化物基化合物半导体晶体的基底基板的至少一部分由助溶剂材料形成,并且将助熔剂材料溶解在助熔剂混合物中,在接近生长温度的温度 III族氮化物基化合物半导体晶体,在半导体晶体生长过程中或半导体晶体生长完成之后。
    • 4. 发明授权
    • Method for producing semiconductor crystal
    • 半导体晶体的制造方法
    • US07459023B2
    • 2008-12-02
    • US11590930
    • 2006-11-01
    • Shiro YamazakiKoji HirataKatsuhiro ImaiMakoto IwaiTakatomo SasakiYusuke MoriMasashi YoshimuraFumio KawamuraYuji Yamada
    • Shiro YamazakiKoji HirataKatsuhiro ImaiMakoto IwaiTakatomo SasakiYusuke MoriMasashi YoshimuraFumio KawamuraYuji Yamada
    • C30B25/12
    • C30B25/00C30B9/00C30B29/403C30B29/406
    • The present invention provides a method for producing a Group III nitride compound semiconductor crystal, the semiconductor crystal being grown through the flux method employing a flux. At least a portion of a substrate on which the semiconductor crystal is to be grown is formed of a flux-soluble material. While the semiconductor crystal is grown on a surface of the substrate, the flux-soluble material is dissolved in the flux from a surface of the substrate that is opposite the surface on which the semiconductor crystal is grown. Alternatively, after the semiconductor crystal has been grown on a surface of the substrate, the flux-soluble material is dissolved in the flux from a surface of the substrate that is opposite the surface on which the semiconductor crystal has been grown. The flux-soluble material is formed of silicon. Alternatively, the flux-soluble material or the substrate is formed of a Group III nitride compound semiconductor having a dislocation density higher than that of the semiconductor crystal to be grown.
    • 本发明提供一种用于制造III族氮化物化合物半导体晶体的方法,该半导体晶体通过使用焊剂的焊剂法生长。 待生长半导体晶体的基板的至少一部分由助熔剂材料形成。 半导体晶体在衬底的表面上生长时,该助熔剂材料从衬底的与生长半导体晶体的表面相反的表面溶解在焊剂中。 或者,在半导体晶体已经在基板的表面上生长之后,从基板的与半导体晶体已经生长的表面相对的表面的助熔剂中溶解助熔剂。 助熔剂材料由硅形成。 或者,助熔剂材料或衬底由位错密度高于要生长的半导体晶体的位错密度的III族氮化物化合物半导体形成。
    • 8. 发明授权
    • Method for producing group III nitride-based compound semiconductor
    • 制备III族氮化物基化合物半导体的方法
    • US08361222B2
    • 2013-01-29
    • US12081943
    • 2008-04-23
    • Shiro YamazakiSeiji NagaiTakayuki SatoKatsuhiro ImaiMakoto IwaiTakatomo SasakiYusuke MoriFumio Kawamura
    • Shiro YamazakiSeiji NagaiTakayuki SatoKatsuhiro ImaiMakoto IwaiTakatomo SasakiYusuke MoriFumio Kawamura
    • C30B15/14C30B15/00C30B21/06C30B27/02C30B28/10C30B30/04
    • C30B29/403C30B9/00C30B9/12C30B29/406
    • In the production of GaN through the flux method, deposition of miscellaneous crystals on the nitrogen-face of a GaN self-standing substrate and waste of raw materials are prevented. Four arrangements of crucibles and a GaN self-standing substrate are exemplified. In FIG. 1A, a nitrogen-face of a self-standing substrate comes into close contact with a sloped flat inner wall of a crucible. In FIG. 1B, a nitrogen-face of a self-standing substrate comes into close contact with a horizontally facing flat inner wall of a crucible, and the substrate is fixed by means of a jig. In FIG. 1C, a jig is provided on a flat bottom of a crucible, and two GaN self-standing substrates are fixed by means of the jig so that the nitrogen-faces of the substrates come into close contact with each other. In FIG. 1D, a jig is provided on a flat bottom of a crucible, and a GaN self-standing substrate is fixed on the jig so that the nitrogen-face of the substrate is covered with the jig. A flux mixture of molten gallium and sodium is charged into each crucible, and a GaN single crystal is grown on a gallium-face under pressurized nitrogen.
    • 在通过助熔剂制造GaN的情况下,可以防止在GaN自立基板的氮面上沉积杂晶,原料的浪费。 例示了四个坩埚和GaN自立衬底的布置。 在图 如图1A所示,自立基板的氮面与坩埚的倾斜的平坦的内壁紧密接触。 在图 如图1B所示,自立基板的氮面与坩埚的水平方向的平坦的内壁紧密接触,通过夹具固定基板。 在图 如图1C所示,在坩埚的平坦底部设置夹具,通过夹具固定两个GaN自立基板,使得基板的氮面彼此紧密接触。 在图 如图1D所示,在坩埚的平坦底部设置夹具,并且将GaN自立基板固定在夹具上,使得基板的氮面被夹具覆盖。 将熔融的镓和钠的助熔剂混合物装入每个坩埚中,并且在加压氮气下在镓面上生长GaN单晶。
    • 9. 发明授权
    • Method for producing a semiconductor crystal
    • 半导体晶体的制造方法
    • US08216365B2
    • 2012-07-10
    • US12073178
    • 2008-02-29
    • Seiji NagaiShiro YamazakiTakayuki SatoKatsuhiro ImaiMakoto IwaiTakatomo SasakiYusuke MoriFumio Kawamura
    • Seiji NagaiShiro YamazakiTakayuki SatoKatsuhiro ImaiMakoto IwaiTakatomo SasakiYusuke MoriFumio Kawamura
    • C30B25/18
    • C30B29/403C30B9/00C30B9/10
    • Objects of the invention are to further enhance crystallinity and crystallinity uniformity of a semiconductor crystal produced through the flux method, and to effectively enhance the production yield of the semiconductor crystal. The c-axis of a seed crystal including a GaN single-crystal layer is aligned in a horizontal direction (y-axis direction), one a-axis of the seed crystal is aligned in the vertical direction, and one m-axis is aligned in the x-axis direction. Thus, three contact points at which a supporting tool contacts the seed crystal are present on m-plane. The supporting tool has two supporting members, which extend in the vertical direction. One supporting member has an end part, which is inclined at 30° with respect to the horizontal plane α. The reasons for supporting a seed crystal at m-plane thereof are that m-plane exhibits a crystal growth rate, which is lower than that of a-plane, and that desired crystal growth on c-plane is not inhibited. Actually, a plurality of seed crystals and supporting tools are periodically placed along the y-axis direction.
    • 本发明的目的是进一步提高通过助焊剂法生产的半导体晶体的结晶度和结晶度均匀性,并有效提高半导体晶体的制造成品率。 包括GaN单晶层的晶种的c轴在水平方向(y轴方向)上排列,晶种的一个a轴在垂直方向上排列,并且一个m轴对齐 在x轴方向。 因此,在m平面上存在支撑工具与晶种接触的三个接触点。 支撑工具具有在垂直方向上延伸的两个支撑构件。 一个支撑构件具有相对于水平面α倾斜30°的端部。 在m面支撑晶种的原因在于,m面的晶体生长速度低于a面的晶体生长速度,c面上的期望的晶体生长没有被抑制。 实际上,沿着y轴方向周期性地放置多个晶种和支撑工具。
    • 10. 发明申请
    • Method for producing a semiconductor crystal
    • 半导体晶体的制造方法
    • US20080223286A1
    • 2008-09-18
    • US12073178
    • 2008-02-29
    • Seiji NagaiShiro YamazakiTakayuki SatoKatsuhiro ImaiMakoto IwaiTakatomo SasakiYusuke MoriFumio Kawamura
    • Seiji NagaiShiro YamazakiTakayuki SatoKatsuhiro ImaiMakoto IwaiTakatomo SasakiYusuke MoriFumio Kawamura
    • C30B23/00
    • C30B29/403C30B9/00C30B9/10
    • Objects of the invention are to further enhance crystallinity and crystallinity uniformity of a semiconductor crystal produced through the flux method, and to effectively enhance the production yield of the semiconductor crystal. The c-axis of a seed crystal including a GaN single-crystal layer is aligned in a horizontal direction (y-axis direction), one a-axis of the seed crystal is aligned in the vertical direction, and one m-axis is aligned in the x-axis direction. Thus, three contact points at which a supporting tool contacts the seed crystal are present on m-plane. The supporting tool has two supporting members, which extend in the vertical direction. One supporting member has an end part, which is inclined at 30° with respect to the horizontal plane α. The reasons for supporting a seed crystal at m-plane thereof are that m-plane exhibits a crystal growth rate, which is lower than that of a-plane, and that desired crystal growth on c-plane is not inhibited. Actually, a plurality of seed crystals and supporting tools are periodically placed along the y-axis direction.
    • 本发明的目的是进一步提高通过助焊剂法生产的半导体晶体的结晶度和结晶度均匀性,并有效提高半导体晶体的制造成品率。 包括GaN单晶层的晶种的c轴在水平方向(y轴方向)上排列,晶种的一个a轴在垂直方向上排列,并且一个m轴对齐 在x轴方向。 因此,在m平面上存在支撑工具与晶种接触的三个接触点。 支撑工具具有在垂直方向上延伸的两个支撑构件。 一个支撑构件具有相对于水平面α倾斜30°的端部。 在m面支撑晶种的原因在于,m面的晶体生长速度低于a面的晶体生长速度,c面上的期望的晶体生长没有被抑制。 实际上,沿着y轴方向周期性地放置多个晶种和支撑工具。