会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Method for producing a semiconductor crystal
    • 半导体晶体的制造方法
    • US08216365B2
    • 2012-07-10
    • US12073178
    • 2008-02-29
    • Seiji NagaiShiro YamazakiTakayuki SatoKatsuhiro ImaiMakoto IwaiTakatomo SasakiYusuke MoriFumio Kawamura
    • Seiji NagaiShiro YamazakiTakayuki SatoKatsuhiro ImaiMakoto IwaiTakatomo SasakiYusuke MoriFumio Kawamura
    • C30B25/18
    • C30B29/403C30B9/00C30B9/10
    • Objects of the invention are to further enhance crystallinity and crystallinity uniformity of a semiconductor crystal produced through the flux method, and to effectively enhance the production yield of the semiconductor crystal. The c-axis of a seed crystal including a GaN single-crystal layer is aligned in a horizontal direction (y-axis direction), one a-axis of the seed crystal is aligned in the vertical direction, and one m-axis is aligned in the x-axis direction. Thus, three contact points at which a supporting tool contacts the seed crystal are present on m-plane. The supporting tool has two supporting members, which extend in the vertical direction. One supporting member has an end part, which is inclined at 30° with respect to the horizontal plane α. The reasons for supporting a seed crystal at m-plane thereof are that m-plane exhibits a crystal growth rate, which is lower than that of a-plane, and that desired crystal growth on c-plane is not inhibited. Actually, a plurality of seed crystals and supporting tools are periodically placed along the y-axis direction.
    • 本发明的目的是进一步提高通过助焊剂法生产的半导体晶体的结晶度和结晶度均匀性,并有效提高半导体晶体的制造成品率。 包括GaN单晶层的晶种的c轴在水平方向(y轴方向)上排列,晶种的一个a轴在垂直方向上排列,并且一个m轴对齐 在x轴方向。 因此,在m平面上存在支撑工具与晶种接触的三个接触点。 支撑工具具有在垂直方向上延伸的两个支撑构件。 一个支撑构件具有相对于水平面α倾斜30°的端部。 在m面支撑晶种的原因在于,m面的晶体生长速度低于a面的晶体生长速度,c面上的期望的晶体生长没有被抑制。 实际上,沿着y轴方向周期性地放置多个晶种和支撑工具。
    • 5. 发明申请
    • Group III nitride semiconductor manufacturing system
    • III族氮化物半导体制造系统
    • US20090106959A1
    • 2009-04-30
    • US12289257
    • 2008-10-23
    • Shiro YamazakiKoji Hirata
    • Shiro YamazakiKoji Hirata
    • H01L21/67
    • C30B29/403C30B9/10Y10T29/41Y10T117/10
    • The invention provides a group III nitride semiconductor manufacturing system which is free from interruption to rotation of a rotational shaft. The group III nitride semiconductor manufacturing system has a reacting vessel having an opening, a crucible disposed in an interior of the reaction vessel and containing a melt including at least a group III metal and an alkali metal, a holding unit supporting the crucible and having a rotational shaft extending from the interior of the reaction vessel to an exterior of the reaction vessel through the opening, a rotational shaft cover covering a part of the rotational shaft positioned at the exterior of the reacting vessel and connected to the reacting vessel at the opening, a rotational driving unit disposed at an outside of the reacting vessel and regulating the rotational shaft and a supply pipe connected to the rotational shaft cover and supplying a gas including at least nitrogen into a gap between the rotational shaft and the rotational shaft cover, wherein the gas and the melt react to grow a group III nitride semiconductor crystal.
    • 本发明提供一种不影响旋转轴旋转的III族氮化物半导体制造系统。 III族氮化物半导体制造系统具有开口的反应容器,设置在反应容器的内部并含有至少具有III族金属和碱金属的熔融物的坩埚,支撑坩埚的保持单元, 旋转轴通过开口从反应容器的内部延伸到反应容器的外部;旋转轴盖,其覆盖位于反应容器外部并连接到开口处的反应容器的旋转轴的一部分, 旋转驱动单元,设置在所述反应容器的外部并调节所述旋转轴;以及供给管,其连接到所述旋转轴盖,并且将至少包含氮的气体供应到所述旋转轴和所述旋转轴盖之间的间隙中,其中, 气体和熔体反应以生长III族氮化物半导体晶体。
    • 9. 发明授权
    • Method for manufacturing a gallium nitride group compound semiconductor
    • 氮化镓基化合物半导体的制造方法
    • US06984536B2
    • 2006-01-10
    • US10052347
    • 2002-01-23
    • Katsuhide ManabeAkira MabuchiHisaki KatoMichinari SassaNorikatsu KoideShiro YamazakiMasafumi HashimotoIsamu Akasaki
    • Katsuhide ManabeAkira MabuchiHisaki KatoMichinari SassaNorikatsu KoideShiro YamazakiMasafumi HashimotoIsamu Akasaki
    • H01L21/20
    • H01L33/32H01L33/007H01L33/025
    • Disclosed herein are (1) a light-emitting semiconductor device that uses a gallium nitride compound semiconductor (AlxGa1−xN) in which the n-layer of n-type gallium nitride compound semiconductor (AlxGa1−xN) is of double-layer structure including an n-layer of low carrier concentration and an n+-layer of high carrier concentration, the former being adjacent to the i-layer of insulating gallium nitride compound semiconductor (AlxGa1−xN); (2) a light-emitting semiconductor device of similar structure as above in which the i-layer is of double-layer structure including an iL-layer of low impurity concentration containing p-type impurities in comparatively low concentration and an iH-layer of high impurity concentration containing p-type impurities in comparatively high concentration, the former being adjacent to the n-layer; (3) a light-emitting semiconductor device having both of the above-mentioned features and (4) a method of producing a layer of an n-type gallium nitride compound semiconductor (AlxGa1−xN) having a controlled conductivity from an organometallic compound by vapor phase epitaxy, by feeding a silicon-containing gas and other raw material gases together at a controlled mixing ratio.
    • 本文公开了(1)使用氮化镓化合物半导体(Al x Ga 1-x N)的发光半导体器件,其中n层n 型氮化镓化合物半导体(Al x Ga 1-x N)是包括低载流子浓度的n层和n < 高载流子浓度的+层,前者与绝缘氮化镓化合物半导体(Al x Ga 1-x N)的i层相邻, ; (2)具有上述类似结构的发光半导体器件,其中i层是双层结构,包括相对较低的含有p型杂质的低杂质浓度的i L层 低浓度和高浓度的含有p型杂质的高杂质浓度的i H +层,前者与n层相邻; (3)具有上述两个特征的发光半导体器件和(4)制造n型氮化镓系化合物半导体层的方法(Al x Ga Ga 1-x N),通过气相外延从有机金属化合物具有受控的导电性,通过以可控混合比将含硅气体和其它原料气体一起供给到一起。