会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Cu capping layer deposition with improved integrated circuit reliability
    • Cu覆盖层沉积具有改进的集成电路可靠性
    • US06897144B1
    • 2005-05-24
    • US10100915
    • 2002-03-20
    • Minh Van NgoPaul Raymond BesserLarry Zhao
    • Minh Van NgoPaul Raymond BesserLarry Zhao
    • H01L21/4763H01L21/768
    • H01L21/76834H01L21/76877
    • The electromigration resistance of nitride capped Cu lines is significantly improved by controlling the nitride deposition conditions to reduce the compressive stress of the deposited nitride layer, thereby reducing diffusion along the Cu-nitride interface. Embodiments include depositing a silicon nitride capping layer on inlaid Cu using dual frequency powers, holding the high frequency power constant and controlling the compressive stress of the deposited silicon nitride capping layer by varying the low frequency power to the susceptor, thereby enabling reduction of the compressive stress below about 2×107 Pascals. Embodiments also include sequentially and contiguously treating the exposed planarized surface of in-laid Cu with a soft plasma containing NH3 diluted with N2, and then depositing the silicon nitride capping layer by plasma enhanced chemical vapor deposition, while varying the low frequency power between about 100 to about 300 watts. Embodiments also include Cu dual damascene structures formed in dielectric material having a dielectric constant (k) less than about 3.9.
    • 通过控制氮化物沉积条件以减小沉积的氮化物层的压应力,从而减少沿着Cu-氮化物界面的扩散,显着改善了氮化物覆盖的Cu线的电迁移电阻。 实施例包括使用双频功率在镶嵌Cu上沉积氮化硅覆盖层,保持高频功率恒定,并通过改变对基座的低频功率来控制沉积的氮化硅覆盖层的压缩应力,从而能够降低压缩 压力低于约2×10 7帕斯卡。 实施例还包括用含N 2 N 3稀释的含有NH 3的软质等离子体连续地并且连续地处理暴露的在内的Cu的平坦化表面,然后沉积氮化硅覆盖层 通过等离子体增强化学气相沉积,同时改变约100至约300瓦特之间的低频功率。 实施例还包括形成在介电常数(k)小于约3.9的电介质材料中的Cu双镶嵌结构。
    • 2. 发明授权
    • Method of forming nitride capped Cu lines with reduced electromigration along the Cu/nitride interface
    • 沿Cu /氮化物界面形成具有减少的电迁移的氮化物封盖的Cu线的方法
    • US06429128B1
    • 2002-08-06
    • US09902587
    • 2001-07-12
    • Paul Raymond BesserMinh Van NgoLarry Zhao
    • Paul Raymond BesserMinh Van NgoLarry Zhao
    • H01L2144
    • H01L21/76862H01L21/3185H01L21/76834H01L21/76883H01L23/53238H01L2924/0002H01L2924/00
    • The electromigration resistance of nitride capped Cu lines is significantly improved by controlling the nitride deposition conditions to reduce the compressive stress of the deposited nitride layer, thereby reducing diffusion along the Cu-nitride interface. Embodiments include depositing a silicon nitride capping layer on inlaid Cu at a reduced RF power, e.g., about 400 to about 500 watts and an increased spacing, e.g., about 680 to about 720 mils, to reduce the compressive stress of the deposited silicon nitride layer to below about 2×107 Pascals. Embodiments also include sequentially and contiguously treating the exposed planarized surface of in-laid Cu with a soft plasma containing NH3 diluted with N2, ramping up the introduction of SiH4 and then initiating plasma enhanced chemical vapor deposition of a silicon nitride capping layer, while maintaining substantially the same pressure and N2 flow rate during plasma treatment, SiH4 ramp up and silicon nitride deposition. Embodiments also include Cu dual damascene structures formed in dielectric material having a dielectric constant (k) less than about 3.9.
    • 通过控制氮化物沉积条件以减小沉积的氮化物层的压应力,从而减少沿着Cu-氮化物界面的扩散,显着改善了氮化物覆盖的Cu线的电迁移电阻。 实施例包括以降低的RF功率(例如,约400至约500瓦特)和增加的间隔(例如,约680至约720密耳)在镶嵌的Cu上沉积氮化硅覆盖层,以减小沉积的氮化硅层的压应力 低于约2×107帕斯卡。 实施例还包括用包含用N 2稀释的NH 3的软质等离子体连续和连续地处理嵌入的Cu的暴露的平坦化表面,使引入SiH4升高,然后启动氮化硅覆盖层的等离子体增强化学气相沉积,同时保持基本上 在等离子体处理期间,相同的压力和N2的流速,SiH4斜坡上升和氮化硅沉积。 实施例还包括形成在介电常数(k)小于约3.9的电介质材料中的Cu双镶嵌结构。
    • 5. 发明授权
    • Silicidation with silicon buffer layer and silicon spacers
    • 用硅缓冲层和硅衬垫硅化
    • US6100145A
    • 2000-08-08
    • US186073
    • 1998-11-05
    • Nick KeplerKarsten WieczorekLarry WangPaul Raymond Besser
    • Nick KeplerKarsten WieczorekLarry WangPaul Raymond Besser
    • H01L21/28H01L21/285H01L21/336
    • H01L29/6659H01L21/28052H01L21/28518H01L29/41783H01L29/665H01L29/6656
    • High integrity ultra-shallow source/drain junctions are formed employing cobalt silicide contacts. Field oxide regions, gates, spacers, and source/drain implants are initially formed. A layer of silicon is then deposited. A protective non-contuctive film is then formed and anisotropically etched to expose the silicon layer on the source/drain regions and the top surfaces of the gates, and to form protective spacers on the edges of the field oxide regions and on the side surfaces of the gates. A layer of cobalt is thereafter deposited and silicidation is performed, as by rapid thermal annealing, to form a low-resistance cobalt silicide while consuming the silicon film. The consumption of the silicon film during silicidation results in less consumption of substrate silicon, thereby enabling the formation of ultra-shallow source/drain junctions without junction leakage, allowing the formation of cobalt silicide contacts at optimum thickness and facilitating reliable device scaling.
    • 使用硅化钴接触形成高完整性超浅源极/漏极结。 初始形成场氧化物区域,栅极,间隔物和源/漏植入物。 然后沉积一层硅。 然后形成保护性非导电膜,并进行各向异性蚀刻,以暴露栅极/源极区域和栅极顶表面上的硅层,并在场氧化物区域的边缘和侧表面上形成保护隔离物 大门。 此后沉积一层钴,通过快速热退火进行硅化,以在消耗硅膜的同时形成低电阻的硅化钴。 在硅化期间硅膜的消耗导致较少的衬底硅消耗,从而能够形成没有结漏的超浅源极/漏极结,从而允许以最佳厚度形成钴硅化物触点并促进可靠的器件缩放。
    • 6. 发明授权
    • Semiconductor component and method of manufacture
    • 半导体元件及制造方法
    • US07319065B1
    • 2008-01-15
    • US10637406
    • 2003-08-08
    • Wen YuPaul Raymond Besser
    • Wen YuPaul Raymond Besser
    • H01L21/4763
    • H01L21/76816H01L23/5226H01L23/53238H01L23/53266H01L23/53295H01L2924/0002H01L2924/00
    • A semiconductor component having a composite via structure with an enhanced aspect ratio and a method for manufacturing the semiconductor component. Vias having a first aspect ratio are formed in a contact layer disposed on a semiconductor substrate and filled with a metal. The metal is planarized and a dielectric layer is formed over the contact layer. Via extension structures having the same aspect ratio as those in the contact layer are formed in the dielectric layer and aligned with the vias in the contact layer. The vias in the dielectric layer are filled with metal and the metal is planarized. The contact vias in the contact layer and the dielectric layer cooperate to form a composite via structure having the enhanced aspect ratio. Additional dielectric layers having via structures can be included in the composite contact structure to further enhance the aspect ratio of the via structure.
    • 具有增强纵横比的复合通孔结构的半导体部件和半导体部件的制造方法。 具有第一纵横比的通孔形成在设置在半导体衬底上并被金属填充的接触层中。 金属被平坦化,并且在接触层上形成电介质层。 在电介质层中形成具有与接触层相同的纵横比的延伸结构,并与接触层中的通孔对准。 电介质层中的通孔用金属填充,金属被平坦化。 接触层和电介质层中的接触孔合作形成具有增强的纵横比的复合通孔结构。 具有通孔结构的附加电介质层可以包括在复合接触结构中,以进一步增强通孔结构的纵横比。
    • 10. 发明授权
    • Method and device using silicide contacts for semiconductor processing
    • 使用半导体处理硅化物触点的方法和器件
    • US06689688B2
    • 2004-02-10
    • US10180858
    • 2002-06-25
    • Paul Raymond BesserSimon S. ChanDavid E. BrownEric Paton
    • Paul Raymond BesserSimon S. ChanDavid E. BrownEric Paton
    • H01L2144
    • H01L21/28518
    • A method for forming silicide contacts includes forming a layer on silicon-containing active device regions such as source, drain, and gate regions. The layer contains a metal that is capable of forming one or more metal silicides and a material that is soluble in a first metal silicide but not soluble in a second metal silicide, or is more soluble in the first metal silicide than in the second metal silicide. The layer may be formed by vapor deposition methods such as physical vapor deposition, chemical vapor deposition, evaporation, laser ablation, or other deposition method. A method for forming silicide contacts includes forming a metal layer, then implanting the metal layer and/or underlying silicon layer with a material such as that described above. The material may be implanted in the silicon layer prior to formation of the metal layer. Contacts formed include a first metal silicide and a material that is more soluble in a first metal silicide than in a second metal silicide. The contacts may be part of a semiconductor device including a substrate, active region containing silicon, and silicide contacts disposed over the active region and capable of electrically coupling the active region to other regions such as metallization lines.
    • 用于形成硅化物接触的方法包括在诸如源极,漏极和栅极区域的含硅有源器件区域上形成层。 该层包含能够形成一种或多种金属硅化物的金属和可溶于第一金属硅化物但不溶于第二金属硅化物的材料,或者比第二金属硅化物更可溶于第一金属硅化物 。 该层可以通过诸如物理气相沉积,化学气相沉积,蒸发,激光烧蚀或其它沉积方法之类的气相沉积方法形成。 形成硅化物接触的方法包括形成金属层,然后用如上所述的材料注入金属层和/或下层硅层。 在形成金属层之前,材料可以被植入到硅层中。 形成的触点包括第一金属硅化物和在第一金属硅化物中比在第二金属硅化物中更可溶的材料。 触点可以是半导体器件的一部分,其包括衬底,含硅的有源区和设置在有源区上的硅化物触点,并且能够将有源区电耦合到诸如金属化线的其它区域。