会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Creation of anisotropic strain in semiconductor quantum well
    • 在半导体量子阱中形成各向异性应变
    • US07348201B2
    • 2008-03-25
    • US11051270
    • 2005-02-03
    • Michael WrabackMitra DuttaPaul Hongen Shen
    • Michael WrabackMitra DuttaPaul Hongen Shen
    • H01L21/20H01L29/15
    • G02F1/01725B82Y20/00G02F2001/0157H01L21/02403H01L21/02507H01L21/0254H01L21/02546H01L29/2003H01L29/205H01L33/06
    • Methods and devices for creating an anisotropic strain in a semiconductor quantum well structure to induce anisotropy thereof are disclosed herein. Initially, a substrate is provided, and a quantum well structure formed upon the substrate. A first crystalline layer (e.g., a GaAs layer) having a first crystalline phase can then be deposited upon the quantum well structure. Thereafter, a second crystalline layer (e.g., a GaN layer) having a second crystalline phase and a thickness thereof can be formed upon the first crystalline layer to thereby induce an anisotropic strain in the quantum well structure to produce a quantum well device thereof. Additionally, the second crystalline layer (e.g., GaN) can be formed from a transparent material and utilized as an anti-reflection layer. By properly choosing the thickness of the second crystalline layer (e.g., a GaN layer), a desired anisotropic strain as well as a desired anti-reflection wavelength can be achieved.
    • 本文公开了在半导体量子阱结构中产生各向异性应变以诱发其各向异性的方法和装置。 首先,提供衬底和形成在衬底上的量子阱结构。 具有第一结晶相的第一晶体层(例如,GaAs层)可以沉积在量子阱结构上。 此后,可以在第一结晶层上形成具有第二结晶相和其厚度的第二结晶层(例如,GaN层),从而在量子阱结构中引起各向异性应变以产生其量子阱器件。 另外,第二晶体层(例如,GaN)可以由透明材料形成并用作抗反射层。 通过适当地选择第二结晶层(例如,GaN层)的厚度,可以实现期望的各向异性应变以及期望的抗反射波长。
    • 2. 发明申请
    • Creation of anisotropic strain in semiconductor quantum well
    • 在半导体量子阱中形成各向异性应变
    • US20060169970A1
    • 2006-08-03
    • US11051270
    • 2005-02-03
    • Michael WrabackMitra DuttaPaul Shen
    • Michael WrabackMitra DuttaPaul Shen
    • H01L31/109
    • G02F1/01725B82Y20/00G02F2001/0157H01L21/02403H01L21/02507H01L21/0254H01L21/02546H01L29/2003H01L29/205H01L33/06
    • Methods and devices for creating an anisotropic strain in a semiconductor quantum well structure to induce anisotropy thereof are disclosed herein. Initially, a substrate is provided, and a quantum well structure formed upon the substrate. A first crystalline layer (e.g., a GaAs layer) having a first crystalline phase can then be deposited upon the quantum well structure. Thereafter, a second crystalline layer (e.g., a GaN layer) having a second crystalline phase and a thickness thereof can be formed upon the first crystalline layer to thereby induce an anisotropic strain in the quantum well structure to produce a quantum well device thereof. Additionally, the second crystalline layer (e.g., GaN) can be formed from a transparent material and utilized as an anti-reflection layer. By properly choosing the thickness of the second crystalline layer (e.g., a GaN layer), a desired anisotropic strain as well as a desired anti-reflection wavelength can be achieved.
    • 本文公开了在半导体量子阱结构中产生各向异性应变以诱发其各向异性的方法和装置。 首先,提供衬底和形成在衬底上的量子阱结构。 具有第一结晶相的第一晶体层(例如,GaAs层)可以沉积在量子阱结构上。 此后,可以在第一结晶层上形成具有第二结晶相和其厚度的第二结晶层(例如,GaN层),从而在量子阱结构中引起各向异性应变以产生其量子阱器件。 另外,第二晶体层(例如,GaN)可以由透明材料形成并用作抗反射层。 通过适当地选择第二结晶层(例如,GaN层)的厚度,可以实现期望的各向异性应变以及期望的抗反射波长。
    • 3. 发明授权
    • Method and apparatus for detection of terahertz electric fields using polarization-sensitive excitonic electroabsorption
    • 使用极化敏感激子电吸收检测太赫兹电场的方法和装置
    • US06476596B1
    • 2002-11-05
    • US09459386
    • 1999-12-06
    • Michael WrabackPaul ShenMitra Dutta
    • Michael WrabackPaul ShenMitra Dutta
    • G01R3102
    • B82Y20/00G01N21/3581H01L31/035236
    • A terahertz electromagnetic energy detector comprises a (100) oriented multiple quantum well thermally bonded to a first transparent substrate having a direction dependent thermal coefficient of expansion such that this coefficient matches the thermal coefficient of expansion of MQW in one direction but different form the direction-dependent thermal coefficient of expansion of the MQW in a perpendicular direction. The resultant internal thermally induced anisotropic strain leads to a polarization dependence of the optical absorption that is strongest near the lowest heavy-hole and light-hole exciton peaks. A second transparent substrate is placed beneath the first transparent substrate and is oriented so that its thermal coefficients of expansion act in a direction perpendicular to those of the first transparent substrate so that the accumulated phase retardation of the optical wave associated with birefringence of the substrate is effectively cancelled. A transverse electric and electromagnetic field is applied across the plane of the quantum well layers to ionize the excitons, which produces an anisotropic bleaching and concomitant line broadening of the anisotropic excitonic absorption. This phenomenon results in a polarization rotation of the transmitted optical field such that light passing through the device may be detected by a photosensitive polarization detector. The device is capable of effectively measuring the phase and frequency of terahertz energy over a wide bandwidth.
    • 太赫兹电磁能量检测器包括热粘合到具有方向依赖的热膨胀系数的第一透明衬底的(100)定向多量子阱,使得该系数与MQW在一个方向上的热膨胀系数匹配但不同,形成方向 - 依赖于MQW在垂直方向上的热膨胀系数。 所得的内部热诱导各向异性应变导致在最低重孔和光空穴激子峰附近最强的光吸收的偏振依赖性。 将第二透明基板放置在第一透明基板下方并且被定向成使得其热膨胀系数在垂直于第一透明基板的方向上起作用,使得与基板的双折射相关联的光波的累积相位延迟为 有效取消。 跨越量子阱层的平面上施加横向电场和电磁场,以使激子离子化,这产生各向异性漂白和各向异性激子吸收的伴随线宽。 这种现象导致透射光场的偏振旋转,使得通过该器件的光可以由光敏极化检测器检测。 该器件能够在宽带宽内有效测量太赫兹能量的相位和频率。
    • 4. 发明授权
    • Infrared/optical imaging techniques using anisotropically strained doped
quantum well structures
    • 使用各向异性应变掺杂量子阱结构的红外/光学成像技术
    • US5748359A
    • 1998-05-05
    • US754004
    • 1996-11-21
    • Paul H. ShenMitra DuttaMichael WrabackJagadeesh Pamulapati
    • Paul H. ShenMitra DuttaMichael WrabackJagadeesh Pamulapati
    • G02F1/017G02F1/03
    • B82Y20/00G02F1/01716G02F2001/01766G02F2203/07
    • An imaging system for transferring an infrared (IR) image to a visible image. The imaging system includes a polarization rotator that rotates the polarization of a visible light beam in response to absorptions of radiation from the IR image. A polarizer outputs components of the visible light beam as a function of the amount of absorbed radiation from the IR image. The polarization rotator is formed from a multiple quantum well structure grown on a semiconductor substrate with a thermally induced uniaxial, in-plane, compressive strain. The multiple quantum well structure includes a heterostructure of undoped barrier layers and doped quantum well layers. The strain causes the quantum well layers to have anisotropic radiation absorption characteristics. In particular, orthogonal components of the visible light parallel to and perpendicular to the strain will experience different degrees of absorption. The dopant in the quantum well layers is sufficient to bleach the lowest exciton resonances, thereby reducing absorption of the light beam. IR absorption from the image decreases the bleaching and increases the ability of the quantum well layers to promote exciton transitions. As such, the polarization of the light beam rotates as a function of the amount of IR absorbed from the image.
    • 一种用于将红外(IR)图像传送到可见图像的成像系统。 成像系统包括响应于来自IR图像的辐射的吸收而旋转可见光束的偏振的偏振旋转器。 偏振器作为来自IR图像的吸收辐射量的函数输出可见光束的分量。 偏振旋转体由在半导体衬底上生长的多量子阱结构形成,其具有热诱导的单轴,面内压缩应变。 多量子阱结构包括未掺杂势垒层和掺杂量子阱层的异质结构。 该应变导致量子阱层具有各向异性的辐射吸收特性。 特别地,平行于和垂直于应变的可见光的正交分量将经历不同程度的吸收。 量子阱层中的掺杂剂足以漂白最低的激子共振,从而减少光束的吸收。 来自图像的IR吸收减少漂白并增加量子阱层促进激子跃迁的能力。 因此,光束的偏振作为从图像吸收的IR的量的函数旋转。
    • 5. 发明授权
    • Microwave system
    • 微波系统
    • US06188808B1
    • 2001-02-13
    • US09315425
    • 1999-05-20
    • Weimin ZhouPaul H. ShenMitra DuttaJagadeesh Pamulapati
    • Weimin ZhouPaul H. ShenMitra DuttaJagadeesh Pamulapati
    • G02F1035
    • G02B6/12004G02B2006/1215H01Q3/2676
    • An optical signal processor is implemented as a monolithically integrated semiconductor structure having optical waveguide devices forming beam splitters, optical amplifiers and optical phase shifters. The monolithic structure photonically controls a phased-array microwave antenna. Phase-locked master and slave lasers generate orthogonal light beams having a difference frequency that corresponds to the microwave carrier frequency of the phased-array antenna. The lasers feed the signal processor, which performs beam splitting, optical amplifying and phase shifting functions. A polarizer and an array of diode detectors convert optical output signals from the signal processor into microwave signals that feed the phased-array antenna. The optical waveguides of the signal processor are fabricated in a single selective epitaxial growth step on a semiconductor substrate.
    • 光信号处理器被实现为具有形成分束器,光放大器和光移相器的光波导器件的单片集成半导体结构。 单片结构光子控制相控阵微波天线。 锁相主激光器和从属激光器产生具有对应于相控阵天线的微波载波频率的差频的正交光束。 激光器馈送信号处理器,其执行光束分离,光放大和相移功能。 偏振器和二极管检测器阵列将来自信号处理器的光输出信号转换成馈入相控阵天线的微波信号。 在半导体衬底上的单个选择性外延生长步骤中制造信号处理器的光波导。
    • 9. 发明授权
    • Wide-range multicolor IR detector
    • 宽范围多色红外探测器
    • US5198659A
    • 1993-03-30
    • US867726
    • 1992-03-23
    • Doran D. SmithMitra DuttaKwong-Kit Choi
    • Doran D. SmithMitra DuttaKwong-Kit Choi
    • H01L31/0352H01L31/101
    • B82Y20/00H01L31/035236H01L31/101
    • An IR photodetector including an IR semiconductor detector with conductive layers on opposite, parallel surfaces. A semiconductor substrate supports the semiconductor IR detector. A circuit is connected across the semiconductor IR detector to provide a bias voltage and for measuring current flow through the semiconductor IR detector. The semiconductor IR detector has a lattice structure made up of a series of potential wells separated by relatively wide potential barriers such that each well has two confined energy levels. A thin spike barrier is placed in the center of alternate potential wells to tailor the absorption characteristics of the semiconductor IR detector. Multicolor operation is achieved by selecting the appropriate well widths for a first group of potential wells and by placing thin spike barriers in a second group of potential wells that are alternately placed between the wells of the first group.
    • 一种红外光电检测器,其包括在相对的平行表面上具有导电层的IR半导体检测器。 半导体衬底支撑半导体IR检测器。 电路跨越半导体IR检测器连接以提供偏置电压并用于测量通过半导体IR检测器的电流。 半导体IR检测器具有由相当宽的势垒隔开的一系列势阱组成的晶格结构,使得每个阱具有两个限制能级。 薄的尖峰势垒置于交替势阱的中心,以调整半导体IR检测器的吸收特性。 通过选择第一组潜在井的适当的井宽以及将交替放置在第一组的井之间的第二组潜在井中的薄的尖峰阻挡层放置来实现多色操作。
    • 10. 发明授权
    • Intersubband semiconductor lasers with enhanced subband depopulation rate
    • 带子半导体激光器具有增强的子带压缩率
    • US06819696B1
    • 2004-11-16
    • US09957531
    • 2001-09-21
    • Gregory BelenkyMitra DuttaMikhail KisinSerge LuryiMichael Stroscio
    • Gregory BelenkyMitra DuttaMikhail KisinSerge LuryiMichael Stroscio
    • H01S500
    • H01S5/3402B82Y20/00H01S5/3416H01S5/3419H01S5/3422H01S2301/173
    • Intersubband semiconductor lasers (ISLs) are of great interest for mid-infrared (2-20 &mgr;m) device applications. These semiconductor devices have a wide range of applications from pollution detection and industrial monitoring to military functions. ISLs have generally encountered several problems which include slow intrawell intersubband relaxation times due to the large momentum transfer and small wave-function overlap of the initial and final electron states in interwell transitions. Overall, the ISL's of the prior art are subject to weak intersubband population inversion. The semiconductor device of the present invention provides optimal intersubband population inversion by providing a double quantum well active region in the semiconductor device. This region allows for small momentum transfer in the intersubband electron-phonon resonance with the substantial wave-function overlap characteristic of the intersubband scattering.
    • Intersubband半导体激光器(ISL)对于中红外(2-20mum)器件应用非常有兴趣。 这些半导体器件具有从污染检测和工业监测到军事功能的广泛应用.ISL通常遇到几个问题,包括由于大的动量传递而引起的慢内插子带松弛时间,以及初始和最终电子的小波函数重叠 状态在井间转变。 总的来说,现有技术的ISL具有弱的子带内群体反转。本发明的半导体器件通过在半导体器件中提供双量子阱有源区域来提供最佳的子带间群体反转。 该区域允许子带内电子 - 声子共振中的小动量传递与子带间散射的基本波函数重叠特性。