会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Negative absolute conductance device and method
    • 负绝对电导装置及方法
    • US5459334A
    • 1995-10-17
    • US309214
    • 1994-09-20
    • Mitra DuttaMichael A. StroscioVladimir V. MitinRimvydas Mickevicius
    • Mitra DuttaMichael A. StroscioVladimir V. MitinRimvydas Mickevicius
    • H01L29/12H01L29/205H01L31/08
    • B82Y10/00H01L29/125
    • A quantum wire embedded in another material or a quantum wire which is free standing. Specifically, the quantum wire structure is fabricated such that a quantum well semiconductor material, for example Gallium Arsenide (GaAS), is embedded in a quantum barrier semiconductor material, for example Aluminum Arsenide (AlAs). Preferably, the entire quantum wire structure is engineered to form multiple subbands and is limited to a low dimensional quantum structure. The dimensions of the quantum wire structure are preferably around 150.times.250 .ANG.. This structure has a negative absolute conductance at a predetermined voltage and temperature. As a result of the resonant behavior of the density of states, the rates of electron scattering in the passive region (acoustic phonon and ionized impurity scattering as well as absorption of optical phonons) decrease dramatically as the electron kinetic energy increases.
    • 嵌入另一种材料中的量子线或自由站立的量子线。 具体地,量子线结构被制造成使量子阱半导体材料,例如砷化镓(GaAS)被嵌入量子势垒半导体材料,例如砷化铝(AlAs)中。 优选地,整个量子线结构被设计成形成多个子带并被限制于低维量子结构。 量子线结构的尺寸优选为150×250左右。 该结构在预定电压和温度下具有负的绝对电导。 作为状态密度的共振行为的结果,随着电子动能增加,被动区域中的电子散射速率(声学声子和离子化杂质散射以及光学声子的吸收)显着降低。
    • 3. 发明授权
    • Quantum well phonon modulator
    • 量子阱声子调制器
    • US5374831A
    • 1994-12-20
    • US51105
    • 1993-04-14
    • Mitra DuttaGerald J. IafrateKi W. KimMichael A. Stroscio
    • Mitra DuttaGerald J. IafrateKi W. KimMichael A. Stroscio
    • H01L29/76H01L29/772H01L29/225
    • H01L29/76H01L29/7727
    • A phonon modulator which includes a semiconductor body having at least first and second polar semiconductor quantum wells formed therein separated by a polar semiconductor barrier. The conduction band energies of the wells and barrier are selected such that the lowest energy electronic states in the two wells are separated by an energy which is greater than the energies of optical phonons in the well and barrier materials. Respective voltages are applied to the wells which are less than the optical phonon emission threshold in the well and barrier materials to generate respective currents therein. Increasing the voltage to the first well to a level in excess of such optical phonon emission threshold causes optical phonons to be emitted from the first well to create a standing interface mode from the first well through the barrier to the second well, thereby providing a scattering mechanism for electrons in the second well and reducing the current thereof.
    • 一种声子调制器,其包括半导体本体,其具有形成在其中的至少第一和第二极性半导体量子阱,所述极化半导体量子阱由极性半导体势垒隔开。 选择阱和势垒的导带能量,使得两个阱中的最低能量电子状态被比井和阻挡材料中的光学声子的能量大的能量分开。 相应的电压施加到井中,该阱小于阱和阻挡材料中的光学声子发射阈值以在其中产生其中的相应电流。 将第一阱的电压提高到超过这种光学声子发射阈值的水平,导致从第一阱发射光学声子,以产生从第一阱通过势垒到第二阱的立体界面模式,从而提供散射 在第二阱中电子的机理并且减小其电流。
    • 4. 发明授权
    • Mesoscopic electronic devices with tailored energy loss scattering
    • 具有定制能量损失散射的介观电子设备
    • US5917194A
    • 1999-06-29
    • US684766
    • 1996-07-17
    • Mitra DuttaMichael A. StroscioGerald J. IafrateKi Wook KimYuri M. Sirenko
    • Mitra DuttaMichael A. StroscioGerald J. IafrateKi Wook KimYuri M. Sirenko
    • H01L29/06H01L29/12H01L29/775H01L31/0352
    • B82Y10/00H01L29/0665H01L29/0673H01L29/125
    • A mesoscopic structure is fabricated such that the desired dominant modes of the acoustic phonons in the structure have wavelengths such that the length of a half-integral number of wavelengths equals the length of the structure through which the desired electron wave is propagating. A manner of achieving this object is to provide for a material in a quantum wire and a material at the end of the quantum wire such that the two materials have such different properties (as disclosed hereinafter) to abruptly dampen the phonon modes at the interface between the two materials. With such an interface, a clamped boundary condition will occur and the modes of amplitude can be assumed to vanish at the interface. Such a case applies at some metal-semiconductor interfaces. In particular, for a mesoscopic device having wire-like regions which terminate on a variety of metal regions (regions used as contacts, gates, barriers, etc.), it is satisfactory to apply clamped boundary conditions. At these boundaries, the acoustic modes will have nodes instead of the anti-nodes that are established in the case of an open boundary.
    • 制造介观结构,使得结构中声学声子的期望主要模式具有波长,使得半整数倍的波长的长度等于期望的电子波正在传播的结构的长度。 实现该目的的一种方式是提供量子线材料和量子线末端的材料,使得两种材料具有如下所述的不同性质(如下所述),以突然地抑制在第 两种材料。 通过这样的界面,会发生夹紧的边界条件,并且可以假定振幅的模式在界面处消失。 这种情况适用于某些金属 - 半导体界面。 特别地,对于具有终止于各种金属区域(用作触点,栅极,屏障等的区域)的线状区域的介观器件,施加夹持的边界条件是令人满意的。 在这些边界处,声学模式将具有节点而不是在开放边界的情况下建立的反节点。
    • 5. 发明授权
    • Field controlled current modulators based on tunable barrier strengths
    • 基于可调阻挡强度的场控电流调制器
    • US5705824A
    • 1998-01-06
    • US497672
    • 1995-06-30
    • Gerald J. LafrateJun HeMitra DuttaMichael A. Stroscio
    • Gerald J. LafrateJun HeMitra DuttaMichael A. Stroscio
    • H01L29/66H01L29/739H01L29/775H01L29/88
    • B82Y10/00H01L29/66977H01L29/739H01L29/775
    • A carrier transport media is doped with impurities or includes barrier structures within or on the carrier transport media and a sinusoidally alternating external electric field(s) with frequencies equal to the Bloch frequency divided by an integer is applied to the carrier transport media to alter the effective barriers of the impurities or barrier structures to an arbitrarily large potential compared to the zero field barrier potential. The various impurities or barrier structures are band engineered and deposited, grown or implanted in the carrier transport media and can take any form such as barrier layers in or on the transport media, laterally induced barriers, and impurities or defects in the carrier transport media. The application of time-dependent external fields across a length of nanoscale or mesoscopic structure leads to an effective renominalization of the barrier potential strengths when the frequency of the applied electric field multiplied by an integer is equal to the Bloch frequency. Under these conditions the transmission probability is altered and the current ratio, i.sub.2 /i.sub.1, will be modulated strongly.
    • 载体传输介质掺杂有杂质或包括在载流子传输介质内或载体传输介质上的屏障结构,并且将频率等于Bloch频率除以整数的正弦交替外部电场施加到载体传输介质以改变载体传输介质 与零场势垒电位相比,杂质或势垒结构的有效屏障具有任意大的电位。 各种杂质或阻挡结构被带式工程化并沉积,生长或植入载体传输介质中,并且可以采取传输介质中或传输介质上的任何形式,例如阻挡层,侧向诱导的屏障,以及载体传输介质中的杂质或缺陷。 当施加的电场乘以整数的频率等于Bloch频率时,在纳米尺度或介观结构的长度上施加时间依赖的外部场的结果导致势垒势垒的有效归一化。 在这些条件下,传输概率被改变,并且电流比率i2 / i1将被强烈地调制。
    • 6. 发明授权
    • Infrared imaging array based on temperature driven anisotropic optical
absorption
    • 基于温度驱动各向异性光吸收的红外成像阵列
    • US5488226A
    • 1996-01-30
    • US341774
    • 1994-11-18
    • Gerald J. IafrateMitra DuttaPaul H. ShenMichael A. Stroscio
    • Gerald J. IafrateMitra DuttaPaul H. ShenMichael A. Stroscio
    • H01L27/16H01L31/0352H01L31/06
    • B82Y20/00H01L27/16H01L31/035236
    • An thermal imaging device having a transparent substrate, an active multiple quantum well (MQW) epilayer with bottom electrical contacts bonded to the substrate, wherein the substrate is cut such that its thermal expansion coefficient is matched or roughly matched to that of the MQW epilayer in the direction parallel to the long axis of the bottom contacts and so that the thermal expansion coefficient of the substrate is mismatched in a direction normal to the long axis of the bottom contacts. Infrared radiation incident on each unit cell of the n.times.m array will produce a temperature change .DELTA.T in the MQW which will produce stress normal to the long axis of the bottom contacts. The uniaxial stress produced by the temperature changes .DELTA.T breaks the rotation symmetry in the plane of the MQW structure. This will result in anisotropic mixing of the heavy and light holes in the MQW epilayer and thus, will result in an anisotropic excitonic absorption of the MQW epilayer, which can be detected and analyzed either electrically or optically.
    • 具有透明基板的热成像装置,具有与基板接合的底部电触点的活性多量子阱(MQW)外延层,其中切割基板,使得其热膨胀系数与MQW外延层的热膨胀系数匹配或大致匹配 平行于底部触点的长轴的方向,使得基板的热膨胀系数在垂直于底部触头的长轴的方向上失配。 入射到nxm阵列的每个单元电池上的红外辐射将在MQW中产生温度变化DELTA T,这将产生垂直于底部触点的长轴的应力。 温度变化产生的单轴应力DELTA T破坏了MQW结构平面的旋转对称性。 这将导致MQW外延层中重孔和光孔的各向异性混合,从而导致MQW外延层的各向异性激子吸收,可以电或光学检测和分析。
    • 9. 发明授权
    • Optical modulator based on piezoelectrically driven anisotropic optical
absorption
    • 基于压电驱动各向异性光吸收的光学调制器
    • US5387997A
    • 1995-02-07
    • US159902
    • 1993-11-29
    • Gerald J. IafrateMitra DuttaHongen ShenMichael A. StroscioArthur Ballato
    • Gerald J. IafrateMitra DuttaHongen ShenMichael A. StroscioArthur Ballato
    • G02F1/017G02F1/015
    • B82Y20/00G02F1/017
    • An optic modulator having a transparent piezoelectric substrate, an active multiple quantum well (MQW) epilayer with bottom electrical contacts bonded to the substrate, wherein the substrate is cut such that its thermal expansion coefficient is matched or roughly matched to that of the MQW epilayer in the direction parallel to the long axes of the bottom contacts and so that the piezoelectrically-active direction of the substrate is normal to the long axes of the bottom contacts. In order to control the bias of the MQW epilayer a transparent contact is disposed over the MQW epilayer. In operation, the piezoelectric substrate, when activated, will displace an anisotropic strain on the MQW epilayer which will break the rotational symmetry in the plane of the MQW. This will result in anisotropic mixing of the heavy and light holes in the MQW epilayer and thus, will result in an anisotropic excitonic absorption of light normal to the MQW epilayer.
    • 一种具有透明压电衬底的光调制器,具有与衬底结合的底部电触点的活性多量子阱(MQW)外延层,其中衬底被切割,使得其热膨胀系数与MQW外延层的热膨胀系数匹配或大致匹配 平行于底部触点的长轴的方向,并且使得基板的压电方向垂直于底部触点的长轴。 为了控制MQW外延层的偏置,在MQW外延层上设置透明触点。 在操作中,当激活时,压电基板将移动MQW外延层上的各向异性应变,这将破坏MQW平面中的旋转对称性。 这将导致MQW外延层中重孔和光孔的各向异性混合,从而导致与MQW外延层垂直的光的各向异性激子吸收。