会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Manufacturing method of single crystal and apparatus of manufacturing
the same
    • 单晶的制造方法及其制造方法
    • US5980630A
    • 1999-11-09
    • US81665
    • 1998-05-20
    • Eiichi IinoKiyotaka TakanoMasanori KimuraHirotoshi Yamagishi
    • Eiichi IinoKiyotaka TakanoMasanori KimuraHirotoshi Yamagishi
    • C30B15/00C30B15/20C30B15/30C30B29/06C30B30/04C30B35/00
    • C30B15/305Y10S117/917Y10T117/1068
    • In a single crystal manufacturing method by a horizontal magnetic field applied CZ method wherein coils are disposed interposing a crucible coaxially with each other, the coils constituting superconductive electromagnets of a magnetic field application apparatus and the silicon crystal is pulled from melt in the crucible while applying a horizontal magnetic field to the melt; an elavation apparatus capable of finely adjusting relative positions of the superconductive electromagnets and the crcucible in a vertical direction is disposed. The descent of a central portion Cm in a depth direction of the melt is canceled by elevating the crucible with the elevating apparatus, the descent being accompanied with proceeding of process of pulling the single crystal, thereby a coil central axis Cc of the superconductive electromagnets always passes through the central portion Cm or below this portion. Compared with the conventional HMCZ method, an uniformity of an intensity distribution of the magnetic field applied to the melt is increased so that a suppression effect on the melt convection all over the crucible is enhanced.
    • 在通过水平磁场施加的CZ方法的单晶制造方法中,其中线圈彼此同轴地布置坩埚,构成磁场施加装置的超导电磁体的线圈和硅晶体在施加时从坩埚中的熔体拉出 熔体的水平磁场; 设置能够精细地调整超导电磁体和坩埚在垂直方向上的相对位置的冲压装置。 通过用升降装置升高坩埚来消除熔体深度方向上的中心部分Cm的下降,伴随着牵引单晶的过程的下降,超导电磁体的线圈中心轴Cc总是 通过中心部分Cm或者低于该部分。 与传统的HMCZ方法相比,施加到熔体的磁场的强度分布的均匀性增加,从而增强了对整个坩埚的熔体对流的抑制效果。
    • 5. 发明授权
    • Silicon single crystal with no crystal defect in peripheral part of
wafer and process for producing the same
    • 晶圆周边部分没有晶体缺陷的硅单晶及其制造方法
    • US6120749A
    • 2000-09-19
    • US101941
    • 1998-07-17
    • Kiyotaka TakanoMakoto IidaEiichi IinoMasanori KimuraHirotoshi Yamagishi
    • Kiyotaka TakanoMakoto IidaEiichi IinoMasanori KimuraHirotoshi Yamagishi
    • C30B15/22C30B15/00C30B29/06H01L21/02H01L21/208C31B33/00
    • C30B29/06C30B15/00Y10S257/913
    • A silicon single-crystal wafer having a diameter of 6 inches or larger and improved in the dielectric breakdown strength of oxide film especially in a peripheral part thereof is provided to thereby heighten the yield of device chips produced per wafer. This wafer has no crystal defects with regard to the dielectric breakdown strength of oxide film in its peripheral region which extends from the circumference and accounts for up to 50% of the total area, in particular which extends from the circumference to a circle 30 mm apart from the circumference. A process for producing a silicon single crystal for easily producing, by the Czochralski method, a silicon single-crystal wafer improved in the dielectric breakdown strength of oxide film especially in a peripheral part thereof without considerably lowering the production efficiency is provided. In this process, the silicon single crystal which is being grown by the Czochralski method is pulled at a rate which is 80 to 60% of the critical pull rate inherent in the pulling apparatus.
    • PCT No.PCT / JP97 / 00090 Sec。 371日期:1998年7月17日 102(e)日期1998年7月17日PCT 1997年1月17日PCT PCT。 WO97 / 26393 PCT出版物 日期1997年7月24日提供直径为6英寸或更大并且提高了氧化膜的绝缘击穿强度的硅单晶晶片,特别是其周边部分,从而提高了每片晶片产生的器件芯片的产量。 该晶片在其周边区域中的氧化膜的介电击穿强度方面没有晶体缺陷,其从圆周延伸并占总面积的50%,特别是从圆周延伸到相隔30mm的圆 从圆周。 提供了一种用于通过切克劳斯斯克方法生产硅单晶的方法,其提供了特别在其周边部分提高氧化膜的介电击穿强度的硅单晶晶片,而不会显着降低生产效率。 在这个过程中,以切克劳斯基法生长的硅单晶以牵引装置固有的临界拉伸速率的80%至60%的速率被拉伸。
    • 7. 发明授权
    • Manufacturing method of single crystal
    • 单晶的制造方法
    • US5792255A
    • 1998-08-11
    • US655201
    • 1996-05-30
    • Eiichi IinoKiyotaka TakanoMasanori KimuraHirotoshi Yamagishi
    • Eiichi IinoKiyotaka TakanoMasanori KimuraHirotoshi Yamagishi
    • C30B15/00C30B15/20C30B15/30C30B29/06C30B30/04C30B15/22
    • C30B15/305Y10S117/917Y10T117/1068
    • In a single crystal manufacturing method by a horizontal magnetic field applied CZ method wherein coils are disposed interposing a crucible coaxially with each other, the coils constituting superconductive electromagnets of a magnetic field application apparatus and the silicon crystal is pulled from melt in the crucible while applying a horizontal magnetic field to the melt; an elavation apparatus capable of finely adjusting relative positions of the superconductive electromagnets and the crcucible in a vertical direction is disposed. The descent of a central portion Cm in a depth direction of the melt is canceled by elevating the crucible with the elevating apparatus, the descent being accompanied with proceeding of process of pulling the single crystal, thereby a coil central axis Cc of the superconductive electromagnets always passes through the central portion Cm or below this portion. Compared with the conventional HMCZ method, an uniformity of an intensity distribution of the magnetic field applied to the melt is increased so that a suppression effect on the melt convection all over the crucible is enhanced.
    • 在通过水平磁场施加的CZ方法的单晶制造方法中,其中线圈彼此同轴地布置坩埚,构成磁场施加装置的超导电磁体的线圈和硅晶体在施加时从坩埚中的熔体拉出 熔体的水平磁场; 设置能够精细地调整超导电磁体和坩埚在垂直方向上的相对位置的冲压装置。 通过用升降装置升高坩埚来消除熔体深度方向上的中心部分Cm的下降,伴随着牵引单晶的过程的下降,超导电磁体的线圈中心轴Cc总是 通过中心部分Cm或者低于该部分。 与传统的HMCZ方法相比,施加到熔体的磁场的强度分布的均匀性增加,从而增强了对整个坩埚的熔体对流的抑制效果。