会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明申请
    • METHODS AND SYSTEMS FOR DETERMINING UNKNOWNS IN COLLABORATIVE FILTERING
    • 用于确定协同过滤中的知识的方法和系统
    • US20110106817A1
    • 2011-05-05
    • US12609327
    • 2009-10-30
    • Rong PanMartin B. Scholz
    • Rong PanMartin B. Scholz
    • G06F17/30G06N7/02
    • G06Q30/02G06Q30/0282
    • Embodiments of the present invention are directed to methods and systems for determining unknowns in rating matrices. In one embodiment, a method comprises forming a rating matrix, where each matrix element corresponds to a known favorable user rating associated with an item or an unknown user rating associated with an item. The method includes determining a weight matrix configured to assign a weight value to each of the unknown matrix elements, and sampling the rating matrix to generate an ensemble of training matrices. Weighted maximum-margin matrix factorization is applied to each training matrix to obtain corresponding sub-rating matrix, the weights based on the weight matrix. The sub-rating matrices are combined to obtain an approximate rating matrix that can be used to recommend items to users based on the rank ordering of the corresponding matrix elements.
    • 本发明的实施例涉及用于确定评级矩阵中的未知数的方法和系统。 在一个实施例中,一种方法包括形成评级矩阵,其中每个矩阵元素对应于与项目相关联的已知有利用户评级或与项目相关联的未知用户评级。 该方法包括确定权重矩阵,其被配置为向每个未知矩阵元素分配权重值,以及对该等级矩阵进行采样以生成训练矩阵的集合。 加权最大边缘矩阵因子分解被应用于每个训练矩阵以获得相应的次级矩阵,权重基于权重矩阵。 将子评级矩阵组合以获得可以用于基于相应矩阵元素的秩排序向用户推荐项目的近似等级矩阵。
    • 7. 发明授权
    • Methods and systems for determining unknowns in collaborative filtering
    • 用于确定协同过滤中未知数的方法和系统
    • US08185535B2
    • 2012-05-22
    • US12609327
    • 2009-10-30
    • Rong PanMartin B. Scholz
    • Rong PanMartin B. Scholz
    • G06F7/00G06F17/30
    • G06Q30/02G06Q30/0282
    • Embodiments of the present invention are directed to methods and systems for determining unknowns in rating matrices. In one embodiment, a method comprises forming a rating matrix, where each matrix element corresponds to a known favorable user rating associated with an item or an unknown user rating associated with an item. The method includes determining a weight matrix configured to assign a weight value to each of the unknown matrix elements, and sampling the rating matrix to generate an ensemble of training matrices. Weighted maximum-margin matrix factorization is applied to each training matrix to obtain corresponding sub-rating matrix, the weights based on the weight matrix. The sub-rating matrices are combined to obtain an approximate rating matrix that can be used to recommend items to users based on the rank ordering of the corresponding matrix elements.
    • 本发明的实施例涉及用于确定评级矩阵中的未知数的方法和系统。 在一个实施例中,一种方法包括形成评级矩阵,其中每个矩阵元素对应于与项目相关联的已知有利用户评级或与项目相关联的未知用户评级。 该方法包括确定权重矩阵,其被配置为向每个未知矩阵元素分配权重值,以及对该等级矩阵进行采样以生成训练矩阵的集合。 加权最大边缘矩阵因子分解被应用于每个训练矩阵以获得相应的次级矩阵,权重基于权重矩阵。 将子评级矩阵组合以获得可以用于基于相应矩阵元素的秩排序向用户推荐项目的近似等级矩阵。